45 research outputs found

    Supplementary data for the article: Malenov, D. P.; Zarić, S. D. Stacking Interactions of Aromatic Ligands in Transition Metal Complexes. Coordination Chemistry Reviews 2020, 419, 213338. https://doi.org/10.1016/j.ccr.2020.213338

    Get PDF
    Supplementary material for: [https://doi.org/10.1016/j.ccr.2020.213338]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/4030

    Study of parallel interactions of delocalized [Pi]-systems in transition metal complexes using quantum chemical and informatic methods

    Get PDF
    ΠŸΠ°Ρ€Π°Π»Π΅Π»Π½Π΅ стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ Ξ·-ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΎΠ²Π°Π½ΠΈΡ… Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… Π»ΠΈΠ³Π°Π½Π°Π΄Π° ΠΈ Ρ…Π΅Π»Π°Ρ‚Π½ΠΈΡ… прстСнова испитиванС су ΠΏΡ€Π΅Ρ‚Ρ€Π°ΠΆΠΈΠ²Π°ΡšΠ΅ΠΌ ΠšΠ΅ΠΌΠ±Ρ€ΠΈΡ‡ΠΊΠ΅ Π±Π°Π·Π΅ структурних ΠΏΠΎΠ΄Π°Ρ‚Π°ΠΊΠ° ΠΈ ΠΊΠ²Π°Π½Ρ‚Π½ΠΎΡ…Π΅ΠΌΠΈΡ˜ΡΠΊΠΈΠΌ ΠΏΡ€ΠΎΡ€Π°Ρ‡ΡƒΠ½ΠΈΠΌΠ°. ΠΠ°Ρ˜Ρ˜Π°Ρ‡Π΅ стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΎΠ²Π°Π½ΠΈΡ… ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Π° Π±Π΅Π½Π·Π΅Π½Π° (-4,0 kcal/mol) ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΎΠ²Π°Π½ΠΈΡ… Ρ†ΠΈΠΊΠ»ΠΎΠΏΠ΅Π½Ρ‚Π°Π΄ΠΈΠ΅Π½ΠΈΠ»-анјона (-3,3 kcal/mol) су ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½ΠΎ-смакнутС, ΠΈ Ρ˜Π°Ρ‡Π΅ су ΠΎΠ΄ стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° Ρƒ Π΄ΠΈΠΌΠ΅Ρ€Ρƒ Π±Π΅Π½Π·Π΅Π½Π° (-2,7 kcal/mol). ΠœΠ΅Ρ’ΡƒΡ‚ΠΈΠΌ, Π°Π½Π°Π»ΠΈΠ·Π° кристалних структура ΠΏΠΎΠΊΠ°Π·Π°Π»Π° јС Π΄Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΎΠ²Π°Π½ΠΈ Π±Π΅Π½Π·Π΅Π½ ΠΈ Ρ†ΠΈΠΊΠ»ΠΎΠΏΠ΅Π½Ρ‚Π°Π΄ΠΈΠ΅Π½ΠΈΠ»-анјон Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°Ρ˜Ρƒ Π²Π΅Π»ΠΈΠΊΠΈ Π±Ρ€ΠΎΡ˜ стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° Π½Π° Π²Π΅Π»ΠΈΠΊΠΈΠΌ Ρ…ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»Π½ΠΈΠΌ ΠΏΠΎΠΌΠ΅Ρ€Π°ΡšΠΈΠΌΠ°, услСд Ρ‚ΠΎΠ³Π° ΡˆΡ‚ΠΎ Ρ„ΠΎΡ€ΠΌΠΈΡ€Π°ΡšΠ΅ Ρ‚Π°ΠΊΠ²ΠΈΡ… ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° Π΄ΠΎΠ²ΠΎΠ΄ΠΈ Π΄ΠΎ ΡƒΡΠΏΠΎΡΡ‚Π°Π²Ρ™Π°ΡšΠ° ΡΡ‚Π°Π±ΠΈΠ»Π½ΠΈΡ˜ΠΈΡ… супрамолСкулских структура. Π‘Ρ‚Π΅ΠΊΠΈΠ½Π³ ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ Π½Π° Π²Π΅Π»ΠΈΠΊΠΈΠΌ Ρ…ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»Π½ΠΈΠΌ ΠΏΠΎΠΌΠ΅Ρ€Π°ΡšΠΈΠΌΠ° су Π²Π΅ΠΎΠΌΠ° Ρ‚ΠΈΠΏΠΈΡ‡Π½Π΅ Π·Π° сСндвич-јСдињСња Π±Π΅Π½Π·Π΅Π½Π° ΠΈ Ρ†ΠΈΠΊΠ»ΠΎΠΏΠ΅Π½Ρ‚Π°Π΄ΠΈΠ΅Π½ΠΈΠ»-анјона, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π΄Π° ΠΏΠΎΡΠ΅Π΄ΡƒΡ˜Ρƒ ΠΎΠΊΠΎ 75% Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Π½Π°Ρ˜Ρ˜Π°Ρ‡Π΅ стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅. ОвС ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ сС Ρ€Π΅Ρ’Π΅ Ρ˜Π°Π²Ρ™Π°Ρ˜Ρƒ ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ полусСндвич-јСдињСња, Ρ˜Π΅Ρ€ ΡšΠΈΡ…ΠΎΠ²Π° Ρ˜Π°Ρ‡ΠΈΠ½Π° Π½Π΅ ΠΏΡ€Π΅Π»Π°Π·ΠΈ 55% Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Π΅ Π½Π°Ρ˜Ρ˜Π°Ρ‡Π΅ стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅. Π—Π° Ρ€Π°Π·Π»ΠΈΠΊΡƒ ΠΎΠ΄ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½ΠΎΠ²Π°Π½ΠΈΡ… Π°Ρ€ΠΎΠΌΠ°Ρ‚ΠΈΡ‡Π½ΠΈΡ… прстСнова, Ρ…Π΅Π»Π°Ρ‚Π½ΠΈ прстСнови Π½Π΅ Π³Ρ€Π°Π΄Π΅ јакС стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ Π½Π° Π²Π΅Π»ΠΈΠΊΠΈΠΌ Ρ…ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»Π½ΠΈΠΌ ΠΏΠΎΠΌΠ΅Ρ€Π°ΡšΠΈΠΌΠ°. ΠΠ°Ρ˜Ρ˜Π°Ρ‡Π΅ Ρ…Π΅Π»Π°Ρ‚-Π°Ρ€ΠΈΠ» стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ ΠΈΠΌΠ°Ρ˜Ρƒ ΠΏΠ°Ρ€Π°Π»Π΅Π»Π½ΠΎ-смакнутС Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π΅, ΡˆΡ‚ΠΎ јС Ρƒ сагласности са Π²Ρ€Π»ΠΎ ΠΈΠ·Ρ€Π°ΠΆΠ΅Π½ΠΎΠΌ Π΄ΠΎΠΌΠΈΠ½Π°Ρ†ΠΈΡ˜ΠΎΠΌ ΠΎΠ²ΠΈΡ… Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡ˜Π° Ρƒ кристалним структурама. ΠΠ°Ρ˜Ρ˜Π°Ρ‡Π° ΠΈΠ·Ρ€Π°Ρ‡ΡƒΠ½Π°Ρ‚Π° стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° ΠΈΠ·ΠΌΠ΅Ρ’Ρƒ Ρ…Π΅Π»Π°Ρ‚Π½ΠΎΠ³ прстСна acac Ρ‚ΠΈΠΏΠ° ΠΈ Π±Π΅Π½Π·Π΅Π½Π° ΠΈΠΌΠ° Π΅Π½Π΅Ρ€Π³ΠΈΡ˜Ρƒ ΠΎΠ΄ -7,2 kcal/mol, ΡˆΡ‚ΠΎ Ρ…Π΅Π»Π°Ρ‚-Π°Ρ€ΠΈΠ» ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅ Ρ‡ΠΈΠ½ΠΈ Π·Π½Π°Ρ‡Π°Ρ˜Π½ΠΎ Ρ˜Π°Ρ‡ΠΈΠΌ ΠΎΠ΄ стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° Ρƒ Π΄ΠΈΠΌΠ΅Ρ€Ρƒ Π±Π΅Π½Π·Π΅Π½Π°. Π£Ρ‚Π²Ρ€Ρ’Π΅Π½ΠΎ јС Π΄Π° Ρ˜Π°Ρ‡ΠΈΠ½Π΅ Ρ…Π΅Π»Π°Ρ‚-Π°Ρ€ΠΈΠ» стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° расту Ρƒ 3d Π½ΠΈΠ·Ρƒ ΠΌΠ΅Ρ‚Π°Π»Π°, услСд Ρ˜Π°Ρ‡Π°ΡšΠ° СлСктростатичког ΠΏΡ€ΠΈΠ²Π»Π°Ρ‡Π΅ΡšΠ°, с ΠΎΠ±Π·ΠΈΡ€ΠΎΠΌ Π½Π° сличнС диспСрзионС ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π΅. ΠˆΠ°Ρ‡ΠΈΠ½Π΅ Ρ…Π΅Π»Π°Ρ‚-Π°Ρ€ΠΈΠ» стСкинг ΠΈΠ½Ρ‚Π΅Ρ€Π°ΠΊΡ†ΠΈΡ˜Π° сличнС су Π·Π° свС ΠΌΠ΅Ρ‚Π°Π»Π΅ Ρƒ 10. Π³Ρ€ΡƒΠΏΠΈ ΠŸΠ‘Π•, ΠΊΠ°ΠΎ послСдица Π½Π°Π΄ΠΎΠΊΠ½Π°Ρ’ΠΈΠ²Π°ΡšΠ° мањС ΠΏΠΎΠ²ΠΎΡ™Π½Π΅ СлСктростатикС ΠΏΠΎΠ²ΠΎΡ™Π½ΠΈΡ˜ΠΎΠΌ Π΄ΠΈΡΠΏΠ΅Ρ€Π·ΠΈΡ˜ΠΎΠΌ ΠΈ ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎ...Parallel stacking interactions of Ξ·-coordinating aromatic ligands and chelate rings were studied by searching the Cambridge Structural Database and by performing quantum chemical calculations. The strongest stacking interactions between coordinating benzenes (-4.0 kcal/mol) and between coordinating cyclopentadienyl-anions (-3.3 kcal/mol) are parallel-displaced, and they are stronger than stacking interactions in benzene dimer (-2.7 kcal/mol). However, analysis of crystal structures has shown that coordinating benzene and cyclopentadienyl-anion form a large number of stacking interactions at large horizontal displacements, since the formation of these interactions leads to establishing of more stable supramolecular structures. Stacking interactions at large horizontal displacements are typical for sandwich compounds of benzene and cyclopentadienyl-anion, since they possess around 75% of energy of the most stable stacking interaction. These interactions occur less frequently between half-sandwich compounds, since their strength does not exceed 55% of energy of the strongest stacking interaction. Unlike coordinating aromatic rings, chelate rings do not form strong stacking interactions at large horizontal displacements. The strongest chelate-aryl stacking interactions have parallel-displaced geometries, which is in agreement with huge dominance of these geometries in crystal structures. The strongest calculated stacking interaction between acac type chelate ring and benzene has the energy of -7.2 kcal/mol, which makes chelate-aryl interactions much stronger than stacking interactions in benzene dimer. It was determined that the strength of chelate-aryl stacking interactions increases across the 3d row, due to increase in electrostatic attraction, with dispersion interactions being very similar. The strengths of chelate-aryl stacking interactions are similar for all metals of Group 10, since less favorable electrostatics are compensated by more favorable dispersion, and vice versa..

    Supplementary data for the article: Malenov, D. P.; Hall, M. B.; ZariΔ‡, S. D. Influence of Metal Ion on Chelate–Aryl Stacking Interactions. International Journal of Quantum Chemistry 2018, 118 (16). https://doi.org/10.1002/qua.25629

    Get PDF
    Supplementary material for: [https://doi.org/10.1002/qua.25629]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/2219

    Recognizing New Types of Stacking Interactions by Analyzing Data in the Cambridge Structural Database

    Get PDF
    Cambridge Structural Database (CSD) is the largest repository of crystal data, containing over 1.2 million crystal structures of organic, metal–organic and organometallic compounds. It is a powerful research tool in many areas, including the extensive studying of noncovalent interactions. In this review, we show how a thorough analysis of CSD crystal data resulted in recognition of novel types of stacking interactions. Even though stacking interactions were traditionally related to aromatic systems, a number of crystallographic studies have shown that nonaromatic metal–chelate rings, as well as hydrogen-bridged rings, can also form stacking interactions. Joined efforts of a CSD analysis and quantum chemical calculations showed that these new stacking interactions are stronger than stacking interactions of aromatic species and recognized them as very important attractive forces in numerous supramolecular systems

    Supplementary data for the article: Malenov, D. P.; ZariΔ‡, S. D. Strong Stacking Interactions of Metal-Chelate Rings Are Caused by Substantial Electrostatic Component. Dalton Transactions 2019, 48 (19), 6328–6332. https://doi.org/10.1039/c9dt00182d

    Get PDF
    Supplementary material for: [https://pubs.rsc.org/en/content/articlelanding/2019/DT/C9DT00182D#!divAbstract]Related to published version: [http://cherry.chem.bg.ac.rs/handle/123456789/3133]Related to accepted version: [http://cherry.chem.bg.ac.rs/handle/123456789/3134
    corecore