238 research outputs found

    Leaky Synapses

    Get PDF

    Alternative N-Terminal Domains of PSD-95 and SAP97 Govern Activity-Dependent Regulation of Synaptic AMPA Receptor Function

    Get PDF
    SummaryPSD-95 and SAP97 are scaffolding proteins that have been implicated in regulating AMPA receptor incorporation and function at synapses. Gain- and loss-of-function approaches, however, have generated conflicting results. To minimize adaptations during development and potential dominant-negative effects of overexpression, we have combined silencing of endogenous PSD-95 in mature neurons with heterologous expression of specific SAP97 or PSD-95 isoforms. We find that both PSD-95 and SAP97 contain alternative N termini expressing either double cysteines that normally are palmitoylated (α-isoforms) or an L27 domain (β-isoforms). Whereas α-isoforms of PSD-95 and SAP97 influence AMPA receptor-mediated synaptic strength independent of activity, the effects of β-isoforms are regulated by activity in a CaMKII-dependent manner. Importantly, the synaptic effects of the β-isoforms are masked by the endogenous α-isoform of PSD-95. These results demonstrate that the different N termini of the predominant endogenous forms of PSD-95 (α-isoform) and SAP97 (β-isoform) govern their role in regulating synaptic function

    A Role for cAMP in Long-Term Depression at Hippocampal Mossy Fiber Synapses

    Get PDF
    AbstractMossy fiber synapses on hippocampal CA3 pyramidal cells, in addition to expressing an NMDA receptor–independent form of long-term potentiation (LTP), have recently been shown to express a novel presynaptic form of long-term depression (LTD). We have studied the mechanisms underlying mossy fiber LTD and present evidence that it is triggered, at least in part, by a metabotropic glutamate receptor–mediated decrease in adenylyl cyclase activity, which leads to a decrease in the activity of the cAMP-dependent protein kinase (PKA) and a reversal of the presynaptic processes responsible for mossy fiber LTP. The bidirectional control of synaptic strength at mossy fiber synapses by activity therefore appears to be due to modulation of the cAMP-PKA signaling pathway in mossy fiber boutons

    G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons

    Get PDF
    AbstractTo study the role of G protein-coupled, inwardly rectifying K+ (GIRK) channels in mediating neurotransmitter actions in hippocampal neurons, we have examined slices from transgenic mice lacking the GIRK2 gene. The outward currents evoked by agonists for GABAB receptors, 5HT1A receptors, and adenosine A1 receptors were essentially absent in mutant mice, while the inward current evoked by muscarinic receptor activation was unaltered. In contrast, the presynaptic inhibitory action of a number of presynaptic receptors on excitatory and inhibitory terminals was unaltered in mutant mice. These included GABAB, adenosine, muscarinic, metabotropic glutamate, and NPY receptors on excitatory synapses and GABAB and opioid receptors on inhibitory synapses. These findings suggest that a number of G protein-coupled receptors activate the same class of postsynaptic K+ channel, which contains GIRK2. In addition, the GIRK2 channels play no role in the inhibition mediated by presynaptic G protein-coupled receptors, suggesting that the same receptor can couple to different effector systems according to its subcellular location in the neuron

    LTP Requires a Unique Postsynaptic SNARE Fusion Machinery

    Get PDF
    SummaryMembrane fusion during exocytosis is mediated by assemblies of SNARE (soluble NSF-attachment protein receptor) and SM (Sec1/Munc18-like) proteins. The SNARE/SM proteins involved in vesicle fusion during neurotransmitter release are well understood, whereas little is known about the protein machinery that mediates activity-dependent AMPA receptor (AMPAR) exocytosis during long-term potentiation (LTP). Using direct measurements of LTP in acute hippocampal slices and an in vitro LTP model of stimulated AMPAR exocytosis, we demonstrate that the Q-SNARE proteins syntaxin-3 and SNAP-47 are required for regulated AMPAR exocytosis during LTP but not for constitutive basal AMPAR exocytosis. In contrast, the R-SNARE protein synaptobrevin-2/VAMP2 contributes to both regulated and constitutive AMPAR exocytosis. Both the central complexin-binding and the N-terminal Munc18-binding sites of syntaxin-3 are essential for its postsynaptic role in LTP. Thus, postsynaptic exocytosis of AMPARs during LTP is mediated by a unique fusion machinery that is distinct from that used during presynaptic neurotransmitter release

    Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity

    Get PDF
    AbstractCompounds known to disrupt exocytosis or endocytosis were introduced into CA1 pyramidal cells while monitoring excitatory postsynaptic currents (EPSCs). Disrupting exocytosis or the interaction of GluR2 with NSF caused a gradual reduction in the AMPAR EPSC, while inhibition of endocytosis caused a gradual increase in the AMPAR EPSC. These manipulations had no effect on the NMDAR EPSC but prevented the subsequent induction of LTD. These results suggest that AMPARs, but not NMDARs, cycle into and out of the synaptic membrane at a rapid rate and that certain forms of synaptic plasticity may utilize this dynamic process

    Autism-Associated Neuroligin-3 Mutations Commonly Impair Striatal Circuits to Boost Repetitive Behaviors

    Get PDF
    In humans, neuroligin-3 mutations are associated with autism, while in mice the corresponding mutations produce robust synaptic and behavioral changes. However, different neuroligin-3 mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype not via changes in the cerebellum or dorsal striatum, but via a selective synaptic impairment in the nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by impairing a specific striatal synapse, and thereby provide a plausible circuit substrate for autism pathophysiology
    corecore