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subsets of neurons, or they may have more of a scaffold-
ing function.

A scenario of multiple transsynaptic signaling proteins
for different subsets of glutamate synapses is a rather
daunting possibility that must now be considered. Such
a possibility would allow for the extensive heterogeneity
found in molecular composition of individual gluta-
matergic postsynaptic specializations, depending on
pre- and postsynaptic cell type, stage of development,
and activity (Rao et al., 1998). Interestingly, there are
two proteins closely related to Narp, neuronal pentraxin
1 and neuronal pentraxin receptor (Dodds et al., 1997).
The latter has a putative transmembrane domain, and
all three can bind to each other in a calcium-regulated
manner. These proteins may function in overlapping sets
of neurons to regulate glutamatergic synaptogenesis.
Considering the complexity and diversity of central syn-
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clustering, O’Brien et al. (1999) may have opened the boring Mitral Cell Dendrite
first chapter in the “Narp hypothesis” for CNS synapto-
genesis.
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Kim, J.H., and Huganir, R.L. (1999). Curr. Opin. Cell Biol. 11, 248–254. and Nicoll, 1999). It has also been found that synaptically
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37–43. porters on surrounding glial cells (Bergles and Jahr,
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Rao, A., Kim, E., Sheng, M., and Craig, A.M. (1998). J. Neurosci. 18, receptors (NMDARs), which are of much higher affinity
1217–1229.

for glutamate than AMPA receptors; this might explain
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hibit synaptic responses mediated solely by NMDARs
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(Kullmann and Asztely, 1998). However, the evidenceDev. Biol. 205, 65–78.
for activation of NMDARs by glutamate spillover has,Tsui, C.C., Copeland, N.G., Gilbert, D.J., Jenkins, N.A., Barnes, C.,
for the most part, been circumstantial.and Worley, P.F. (1996). J. Neurosci. 16, 2463–2478.

In an elegant series of experiments reported in this issueTu, J.C., Xiao, B., Yuan, J.P., Lanahan, A.A., Leoffert, K., Li, M.,
of Neuron, Isaccson (1999) has unequivocally shown inLinden, D.J., and Worley, P.F. (1998). Neuron 21, 717–726.
the olfactory bulb that the synaptic release of glutamate
can spread from one cell and activate NMDARs on a
neighboring cell. Mitral cells, the primary relay neurons
of the olfactory bulb, release glutamate from their den-
drites onto the processes of inhibitory granule cells,Leaky Synapses which in turn release GABA directly back onto the mitral
cell dendrite (see figure) (Jahr and Nicoll, 1982; Isaacson
and Strowbridge, 1998; Schoppa et al., 1998). When this
inhibitory feedback is removed pharmacologically by aThe concept that neurotransmitters can act diffusely

and at some distance from their release site has long GABA antagonist, a direct self-excitation of mitral cells
by glutamate is revealed (Nicoll and Jahr, 1982). Isacc-been associated with monoamine- and peptide-medi-

ated synaptic transmission, in which communication is son now shows that this action is entirely due to the
direct activation of NMDARs. This synaptic responsedictated more by the location of the receptors than by

the specific site of transmitter release. On the other appears to be very efficient. The release of glutamate
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occurs with a probability close to 1, and the open proba- by NMDARs (Gomperts et al., 1998). Finally, a study of
bility of NMDARs when bound by glutamate is high. the rise time of the NMDAR response at silent synapses
Finally, the lack of effect of glutamate uptake blockers failed to find a slowing as would be expected and, in
on the response suggests that glutamate is near satu- fact, was found in the present study for the synaptic
ration. response generated by glutamate spillover (Haas et al.,

The ultimate experiment demonstrating the spread of 1998).
glutamate involves recording from two mitral cells and Thus, the present convincing demonstration of spill-
showing that release of glutamate from one mitral cell over of glutamate in the olfactory bulb can live in peace-
can activate NMDARs on the neighboring cell (see fig- ful coexistence with the silent synapse hypothesis. It
ure). Since these responses were recorded after block- is not necessarily an either/or situation. The important
ade of action potentials with tetrodotoxin and there is question now is whether there is a functional role for
no anatomical evidence for direct synaptic interactions spillover of glutamate onto NMDARs at conventional
between mitral cell dendrites, glutamate must be capa- synapses.
ble of spreading from one dendrite to another. This re-
sponse has two features that would be predicted for
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tion, it was postulated that such synapses lacked func-
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glutamate were able to spill over onto adjacent syn-
apses, the lower concentration might activate the high-
affinity NMDARs but fail to activate the lower-affinity
AMPARs (Kullmann and Asztely, 1998).

Do the present results have an impact on the silent
Thalamocortical Synapses:synapse hypothesis? Probably not. First, the present

results were obtained in the olfactory bulb, where gluta- Sparse but Stentorian
mate is released from dendrites and acts on extrasynap-
tic NMDARs. Thus, it is unclear whether one can extrap-
olate results from this unique synaptic arrangement to

Nearly all of the sensory information that enters theother “classical” excitatory synapses. Second, even if
cortex passes through the thalamus, and the most im-spillover of glutamate does occur at other excitatory
portant thalamocortical (TC) projection is onto spinysynapses, this certainly does not exclude the possibility
neurons in layer 4. These TC synapses thus representof silent synapses that lack functional AMPARs. Indeed,
the main conduit through which information from thethere is now strong anatomical support for the existence
periphery flows into the cortex for further processing.of a population of excitatory synapses which contain
One might imagine that this conduit would be corre-NMDARs but not AMPARs (Nusser et al., 1998). In addi-
spondingly wide, but in fact it is remarkably narrow,tion, it is possible to record NMDAR-only synaptic re-
comprising only about a tenth of all synapses onto a typicalsponses in autapses, a preparation in which glutamate

spillover cannot explain synaptic events mediated only neuron in layer 4. The vigorous and rapid responses of


