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Summary

In humans, neuroligin-3 mutations are associated with autism, while in mice the corresponding

mutations produce robust synaptic and behavioral changes. However, different neuroligin-3

mutations cause largely distinct phenotypes in mice, and no causal relationship links a specific

synaptic dysfunction to a behavioral change. Using rotarod motor learning as a proxy for acquired

repetitive behaviors in mice, we found that different neuroligin-3 mutations uniformly enhanced

formation of repetitive motor routines. Surprisingly, neuroligin-3 mutations caused this phenotype

not via changes in the cerebellum or dorsal striatum, but via a selective synaptic impairment in the

nucleus accumbens/ventral striatum. Here, neuroligin-3 mutations increased rotarod learning by

specifically impeding synaptic inhibition onto D1-dopamine receptor-expressing but not D2-

dopamine receptor-expressing medium spiny neurons. Our data thus suggest that different autism-

associated neuroligin-3 mutations cause a common increase in acquired repetitive behaviors by

impairing a specific striatal synapse, and thereby provide a plausible circuit substrate for autism

pathophysiology.
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Introduction

Many neuropsychiatric disorders are thought to result from deficits in synaptic transmission

within specific neural circuits (Akil et al., 2010). For example, genetic studies of autism

spectrum disorders (ASDs) have identified multiple mutations affecting proteins that

influence synaptic function (Sudhof, 2008; Zoghbi and Bear, 2012). Some of these ASD-

associated mutations, when introduced into mice, cause behavioral phenotypes relevant to

ASD (Etherton et al., 2009; Jamain et al., 2008; Peca et al., 2011; Tabuchi et al., 2007),

providing disease models with construct and face validity (Nestler and Hyman, 2010). Our

understanding of the neural circuits mediating these ASD-related phenotypes, however,

remains limited. Because the inherent complexity of most neural circuits presents a daunting

challenge, few studies have identified specific brain regions, cell types, and synapses where

ASD-associated mutations cause dysregulation of behavior. Identification of such

“molecular circuitry” represents a key step towards understanding ASD pathophysiology,

and pinpointing specific synaptic connections that mediate the behavioral impact of ASD-

associated mutations could allow rational design of therapeutic interventions.

The goal of the present study was to identify a robust behavioral phenotype commonly

caused by different ASD-associated genetic mutations, to determine the specific brain region

and cell type where these mutations alter behavior, and to search for a particular synaptic

dysfunction that might account for the behavioral phenotype. To this end, we focused on

neuroligin-3 (NL3), a postsynaptic cell adhesion molecule that shapes the functional

properties of synapses (Sudhof, 2008). Both a deletion of NL3 (Levy et al., 2011; Sanders et

al., 2011) and a point mutation of NL3 (the R451C substitution; Jamain et al., 2003) were

linked to ASDs. The R451C mutation impairs intracellular trafficking of NL3 (Comoletti et

al., 2004), and reduces NL3 protein levels by ∼90% (Tabuchi et al., 2007), but at the same

time causes gain-of-function effects that are not observed in NL3 knockout (KO) synapses

(Etherton et al., 2011; Foldy et al., 2013; Tabuchi et al., 2007). Although initially the NL3-

R451C mutant phenotype was thought to be informative for ASD pathogenesis, the more

recent association of the NL3 deletion with ASDs suggests that the NL3 loss-of-function

phenotype may be more relevant.

No studies to date have identified behavioral phenotypes that are commonly caused by the

NL3-KO and NL3-R51C mutations. Previous characterizations focused on potential deficits

in social interactions (Chadman et al., 2008; Etherton et al., 2011; Radyushkin et al., 2009;

Tabuchi et al., 2007), but less attention has been given to the second ASD symptom domain,

which includes repetitive and stereotyped movements, routines, and rituals. Simple

stereotyped movements may be innate, while more complex routines are likely acquired

through repetition. Both types of behavior may involve the striatum which exhibits structural

and functional alterations in ASD patients (Di Martino et al., 2011; Hollander et al., 2005;
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Langen et al., 2009). Different striatal subregions interact dynamically as action sequences

are repeated, and become linked in stereotyped patterns (Balleine and O'Doherty, 2010;

Graybiel, 2008; Yin and Knowlton, 2006). Striatal output is processed through two discrete

projections, the direct and indirect pathway, which are formed by different subtypes of

medium spiny projection neurons (MSNs) with distinct anatomical and physiological

properties, including differential expression of D1- and D2-dopamine receptors (D1- and

D2-MSNs, respectively; Gerfen and Surmeier, 2011; Kreitzer and Malenka, 2008).

Here we show that different constitutive NL3 mutations commonly enhance acquisition of

repeteitive motor routines. Using a combination of genetic tools, viral manipulations, and

functional assays, we demonstrate that this phenotype is selectively recapitulated by

conditional deletion of NL3 in adult nucleus accumbens (NAc), a ventral striatal subregion

that functions as an interface between limbic and motor systems (Groenewegen et al., 1996).

This effect was exclusively mediated by D1-MSNs in which the NL3 deletion produced a

cell type-specific imbalance between synaptic inhibition and excitation. Together, our

results indicate that ASD-associated NL3 mutations commonly disrupt striatal circuits in a

subregion-, cell type-, and synapse-specific fashion, and suggest that this disruption may

shape repetitive and stereotypic behaviors associated with ASD.

Results

Common Behavioral Phenotypes Caused by KO and R451C mutations of NL3

NL3-R451C mutant mice exhibit impaired social approach and enhanced spatial learning

(Etherton et al., 2011; Tabuchi et al., 2007; but see Chadman et al., 2008), whereas NL3-KO

mice exhibit impaired social memory (Radyushkin et al., 2009). However, none of these

phenotypes are shared by both mouse lines, even though both mutations are linked to human

ASD and the R451C mutation causes a large reduction in brain NL3 levels similar to the

NL3 KO (Fig. 1A). Therefore, we sought to identify behavioral phenotypes that are common

consequences of both mutations, and thus reflect a loss of NL3 function.

We noted that several mouse lines with ASD-associated mutations exhibit enhanced learning

on the accelerating rotarod (Table S1), a task that requires formation and consolidation of a

repetitive motor routine. We thus tested rotarod performance of NL3-KO and NL3-R451C

mutant mice under “standard” conditions, with the speed of rotation accelerating from 4 to

40 rpm over 300 s (Figure 1B). On the first trial, NL3 mutant mice performed similarly to

wild-type littermates (Figures 1C and 1G), and their initial performance was also similar at

higher rotation speeds (Figure S1A). Over the last several trials, however, the performance

of both NL3 mutant mouse lines diverged from that of wild-type mice, approaching the 300

s cutoff time. Trials are stopped at this point in standard protocols, introducing a ceiling

effect that masks further improvements in performance. A substantial number of mice

reached the 300 s maximum by the sixth trial, and the percentage of mice reaching

maximum was higher for NL3 mutant mice than for wild-type mice (Figures 1C and 1G,

insets).

To circumvent this limitation, we doubled the speed of rotarod acceleration in a second

phase of the assay (Etherton et al., 2009). Under these more challenging conditions (8 to 80
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rpm over 300 s), both NL3-KO and R451C mutant mice continued to improve, whereas

wild-type mice showed little improvement (Figures 1D and 1H). Challenging task

conditions are potentially stressful, but the continued improvement of NL3 mutant mice did

not reflect enhanced ability to cope with stress as measured in the forced swim test (Figure

S1B).

To better evaluate rotarod performance at both rates of acceleration, we calculated the speed

of rotation at the end of each trial, and plotted this “terminal speed” across all 12 trials

(Figures 1E and 1I). Significant statistical interactions between genotype and trial confirmed

that superior performance developed over time in both NL3 mutant lines. We next used

linear regression analyses on data from each individual mouse, and calculated the intercept

(to estimate initial motor coordination) and the slope (to estimate learning rate; Figure S1C).

Both NL3-KO and R451C mutant mice exhibited a significantly increased learning rate but

similar initial coordination (Figures 1F and 1J). The same phenotypes were reproduced in

NL3 mutant mice on a hybrid genetic background (Figure S1D-S1G), and thus are not an

artifact caused by backcrossing to C57Bl/6.

To measure the consistency of the repetitive motor routine that develops during rotarod

training, we analyzed videos of mice performing this task. Pilot studies identified several

components of the motor routine that became less variable with training, including the

vertical location of each step, the length of each step, and the time between steps (Figures

1K and S1H-S1L). To compare the consistency of these measures in wild-type and NL3-KO

mice, we focused on the first and last trials at 8 to 80 rpm (i.e., trials 7 and 12), where

differences in learning were most striking. During the first 30 sec of each trial, variability in

each measure (represented by the standard deviation) decreased with training in NL3-KO

mice (Figures 1L-1N, left panels), indicating a more repetitive motor routine. Variability in

each measure also negatively correlated with time to fall off the rotarod (Figures 1L-1N,

right panels), showing that the time to fall off serves as a surrogate index of this acquired

repetitive behavior.

During open field tests, NL3-KO and R451C-mutant mice were consistently hyperactive

(Figures 1O and 1Q), leading to significant increases in total distance travelled and in the

number of ambulatory episodes for both lines of NL3 mutant mice (Figures 1P and 1R).

However, there were no substantial changes in movement velocity or in crossings through

the center of the open field (Figures S1M and S1N), suggesting that the rotarod phenotypes

in these mice are not related to increased speed of movement or altered anxiety level.

While general hyperactivity could potentially enhance rotarod performance, this effect

should be evident from the very first trial, when NL3 mutant mice perform at WT levels

over a range of speeds (Figure S1A). Moreover, the open field hyperactivity and learning

rates did not correlate in individual mice (Figures S1Q and S1R). Thus, these two

phenotypes likely represent different facets of an underlying deficit in behavioral regulation.

We also evaluated innate forms of stereotyped behaviors during spontaneous open field

activity. Both the time spent ambulatory and the time spent performing stereotypic

movements were enhanced by the NL3 KO and the R451C mutation (Figures S1O-S1P).
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Quantitative assessment of stereotypic movements with a force plate actometer (Fowler et

al., 2001) confirmed an increased vigor of stereotypic movements in NL3-KO mice,

indicated by greater force variance during periods of low mobility (Figure 1S). We also

detected a greater number of wall jumps (Presti et al., 2004) and an abnormal bias in the

direction of rotation during locomotion (Figures 1T and 1U). Together, these results

demonstrate that ASD-associated mutations in NL3 cause a constellation of both innate and

acquired behaviors that are repetitive and stereotyped.

The Molecular Circuitry of NL3-Mediated Behavioral Regulation

The results presented above indicate that two different constitutive NL3 mutations – the KO

and the R451C point mutation – cause the same robust phenotypes in mouse behavioral

assays of rotarod learning and open field activity. As both mutations substantially reduce

NL3 protein levels (Tabuchi et al., 2007), these phenotypes are plausibly mediated by loss of

NL3 in the critical brain regions and neuron types that underlie these behaviors. To

interrogate this molecular circuitry, we generated NL3 conditional KO (NL3-cKO) mice in

which the NL3 start codon (located in exon 2) is deleted by Cre recombinase (Figures 2A,

S2A and S2B).

To confirm Cre-mediated deletion of NL3, we crossed homozygous floxed females with

males carrying Nestin-Cre, which is expressed by all neurons during development. Male

NL3-cKO offspring carrying Nestin-Cre showed complete loss of NL3 mRNA and protein

in whole brain, with no compensatory changes in either NL1 or NL2 (Figure 2B and 2C;

note that NL3 is an x-chromosomal gene). Behavioral testing of open field activity revealed

the same hyperactivity phenotype as the constitutive NL3 deletion (Figures 2D and 2E).

The repetitive motor routines in NL3 mutant mice could potentially involve the cerebellum

and basal ganglia, both of which are linked to motor learning (Hikosaka et al., 2002). To

address the impact of deleting NL3 in specific elements of these circuits, we crossed NL3-

cKO mice with transgenic mice expressing Cre in defined neuronal subpopulations. We first

used L7-Cre to delete NL3 in cerebellar Purkinje cells (Figure 2F), which have been

implicated in motor phenotypes caused by deletion of NL3 (Baudouin et al., 2012). We were

surprised to find that this manipulation did not alter rotarod performance (Figures 2G-2J).

However, NL3-cKO mice carrying L7-Cre were hyperactive (Figures 2K and 2L). Thus,

despite rendering mice hyperactive, the NL3 deletion in cerebellar Purkinje cells fails to

recapitulate the repetitive motor routine phenotype. We also crossed NL3-cKO mice with

mice expressing Cre under the parvalbumin promoter (PV-Cre), deleting NL3 in cerebellar

Purkinje cells as well as in specific populations of interneurons widely distributed

throughout the brain (Fishell and Rudy, 2011). This manipulation also failed to influence

rotarod performance, but significantly decreased activity in the open field (Figures S2C-

S2H).

The striatum and related basal ganglia circuits contribute to the acquisition of repetitive and

stereotyped behaviors (Balleine and O'Doherty, 2010; Graybiel, 2008; Yin and Knowlton,

2006), and have also been implicated in rotarod learning (Costa et al., 2004; Dang et al.,

2006; Yin et al., 2009). To explore whether NL3 mutations may affect repetitive behaviors

by altering striatal circuits, we used transgenic mice that express Cre in D1- or in D2-MSNs
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of the striatum (Gerfen and Surmeier, 2011; Kreitzer and Malenka, 2008). When a D1-

dopamine receptor-Cre line (D1-Cre) was used to delete NL3 in D1-MSNs, we observed the

full spectrum of behavioral phenotypes associated with the NL3-KO and R451C mutations,

namely enhancement of rotarod learning and increased open field activity (Figures 3A-3G).

In contrast, when the adenosine-2a receptor-Cre line (A2a-Cre) was used to target D2-MSNs

while avoiding cholinergic interneurons (Durieux et al., 2009), we detected no effect on

rotarod performance or open field activity (Figures 3H-3N). Thus, ablation of NL3 in D1-

MSNs alone produced the enhanced rotarod learning observed in NL3-KO mice. We also

crossed D1-Cre mice with the NL3-R451C mutant line, which was generated with loxP sites

flanking the mutated exon 7 (Tabuchi et al., 2007), enabling deletion of the mutant NL3-

R451C protein by Cre (Figure S3A). This manipulation had no effect on the enhanced

rotarod learning of NL3-R451C mutant mice (Figures S3B-S3D), as expected if the R451C

mutation was already causing loss of NL3 function in these cells.

To investigate why D1-MSNs may be selectively sensitive to deletion of NL3, we aspirated

the cytosol of individual MSNs in both the ventral and dorsal striatum (Figure 3O), and

measured by quantitative RT-PCR the mRNA levels of different neuroligin isoforms as well

as of markers that differentiate D1- and D2-MSNs (Heiman et al., 2008). Robust differences

in these cell type-specific markers confirmed successful isolation of single MSNs (Figure

3P). In the NAc, NL3 mRNA levels were significantly higher in D1-MSNs than in D2-

MSNs, with no differences in NL1 or NL2 levels (Figure 3Q). In the dorsal striatum,

however, the differential NL3 expression that we observed in the NAc was not apparent, and

NL3 was expressed at similarly low levels in both MSN subtypes (Figures 3R and S4).

To determine the behavioral consequences of spatially restricted NL3 deletions from either

the dorsal striatum or the NAc, we used NL3-cKO mice and performed in vivo stereotactic

injections of adeno-associated viruses (AAVs) that express Cre recombinase fused with GFP

under control of the synapsin promoter (Figure 4A). A second virus encoding a catalytically

inactive version of Cre recombinase (ΔCre) was used as a control. Widespread deletion of

NL3 in the dorsal striatum had no effect on either rotarod performance or open field activity

(Figures 4B-4G). Deletion of NL3 in the NAc, however, significantly enhanced rotarod

learning and increased open field activity (Figures 4H-4M). While consistent with the high

level of NL3 expression in D1-MSNs of the NAc, these results are somewhat unexpected

because the NAc is commonly associated with reward-related behaviors, rather than motor

function (Balleine and O'Doherty, 2010; Graybiel, 2008; Yin and Knowlton, 2006). Viral

expression of Cre in the NAc had no effect on the enhanced rotarod learning of NL3-R451C

mutant mice (Figures S3E-S3G), suggesting that the R451C mutation (which decreases NL3

protein levels) was already causing a loss of NL3 function in this circuit.

Although viral injections allow NL3 deletions in a specific striatal subregion, they do not

restrict this deletion to specific cell types. In order to definitively address the role of D1-

MSNs in the NAc, we implemented a “rescue” strategy to restore NL3 function in this

subpopulation of neurons. We constructed an AAV that contains NL3- and mVenus-

expression cassettes orientated as a double-inverse open reading frame (DIO; Figure 5A).

Injection of this AAV into the NAc of NL3-cKO mice carrying D1-Cre restores NL3

function only in D1-MSNs at the site of injection (see Figure 5A, inset). This manipulation
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abolished the phenotype caused by conditional NL3 deletion in D1-MSNs, as the behavior

of these mice was identical to a control group lacking D1-Cre (Figures 5B-5G). Together,

these experiments identify D1-MSNs in the NAc as a critical node in the molecular circuitry

mediating the behavioral consequences of the NL3 deletion.

Bidirectional Control of Behavior by Subtypes of NAc MSNs

The preceding results are surprising in light of previous literature implicating the dorsal

striatum in rotarod learning (Costa et al., 2004; Yin et al., 2009). We therefore sought to

independently validate the relative contributions of D1- and D2-MSNs in the NAc and

dorsal striatum to rotarod performance and open field activity. To this end, we developed an

AAV that expresses an engineered Kir2.1 K+-channel subunit in a Cre-dependent fashion

(DIO-Kir; Lin et al., 2010). We injected this virus into D1-Cre and A2a-Cre mice (Figure

6A). As expected, infected MSNs fired fewer spikes in response to depolarizing current

injections, and exhibited a reduced input resistance and an increased action potential firing

threshold (Figures 6B and 6C). This virus was used to investigate the behavioral

consequences of downregulating the activity of specific MSN subtypes in the NAc or dorsal

striatum.

Expression of DIO-Kir in the NAc of D1-Cre mice did not affect performance on early trials

of the accelerating rotarod, but significantly reduced performance late in training (Figures

6D-6F). The opposite effect was observed following injection into the NAc of A2a-Cre mice

(which express Cre in D2-MSNs), with enhanced performance late in training (Figures

6H-6J). Open field activity in these same mice was also altered in a bidirectional fashion,

with D1-Cre and A2a-Cre exhibiting decreases and increases in activity, respectively

(Figures 6G and 6K).

Injection of DIO-Kir into the dorsal striatum produced a very different phenotypic pattern.

In D1-Cre mice, it caused a dramatic impairment in rotarod performance that was evident

from the first trial and persisted throughout testing, indicating reduced motor coordination

(Figures 6L-6N). Analogous experiments with A2a-Cre mice produced no phenotype

(Figures 6P-6R), and open field activity was not altered by any manipulation of the dorsal

striatum (Figures 6O and 6S).

To compare the impact of manipulating different cell types in different striatal subregions,

we normalized the performance of each experimental group to their wild-type littermate

controls for the first and last trials of rotarod testing and for open field activity (Figures

6T-6V). These results demonstrated that the balance between activation of D1- and D2-

MSNs in the NAc dynamically regulates behavior in the same tasks that are altered by NL3

deletion, while MSNs in the dorsal striatum play a different behavioral role. The data also

show that behavioral regulation of open field activity and rotarod performance can be

dissociated at the circuit level, as already indicated by the analysis of the cerebellar function

of NL3 (Figure 2).

NL3 Deletion Impairs Synaptic Inhibition of D1-MSNs in the NAc

To test the hypothesis that deletion of NL3 alters synaptic transmission onto D1-MSNs of

the NAc, we performed whole-cell voltage-clamp recordings in acute slices from NL3-KO
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mice. These mice were crossed with a D1-tomato reporter line, permitting targeted

recordings from red D1-MSNs and non-fluorescent D2-MSNs. We first investigated

excitatory synaptic function in both MSN subtypes by recording spontaneous miniature

excitatory postsynaptic currents (mEPSCs), but detected no changes in D1- or D2-MSNs in

NL3-KO mice (Figures 7A and 7B). There were also no substantial changes in the paired-

pulse ratio of evoked EPSCs, and the complement and subunit composition of synaptic

AMPA and NMDA receptors appeared normal in both MSN subtypes (Figure S5).

Alterations in the function of metabotropic glutamate receptors (mGluRs), particularly

mGluR-dependent long-term depression (LTD), have been reported in several ASD mouse

models (Auerbach et al., 2011; Baudouin et al., 2012). Bath application of a group I mGluR

agonist, DHPG, caused a transient depression of EPSC amplitude in D1-MSNs that was

similar in wild-type and NL3-KO mice (Figure 7C). DHPG caused a long-lasting depression

of the EPSC amplitude that was also indistinguishable between wild-type and NL3-KO mice

(Figure 7D). These results indicate that the function of group I mGluRs in MSNs of the NAc

is not grossly altered by deletion of NL3.

A major component of mGluR-dependent LTD in the NAc involves postsynaptic release of

endocannabinoids and activation of presynaptic CB1 receptors, leading to reduced

probability of glutamate release (Grueter et al., 2010). In our experiments, this reduction in

glutamate release manifested as an increase in paired-pulse ratio, with similar magnitudes in

both wild-type (29 + 9%) and NL3-KO mice (20 + 9%). Thus, the NL3-KO mutation does

not affect the molecular machinery required for synthesis and detection of endocannabinoids

at NAc excitatory synapses.

We next assessed inhibitory synaptic function in NL3-KO mice, and recorded miniature

inhibitory postsynaptic synaptic currents (mIPSCs) in the NAc. Strikingly, we found that in

D1-MSNs, the mIPSC frequency was reduced by ∼50% in NL3-KO and NL3-R451C

mutant mice, whereas the mIPSC amplitude was unchanged (Figures. 7E and S6A),

indicating both ASD-associated NL3 mutations have a common synaptic effect in this

circuit. In D2-MSNs, the NL3-KO mutation produced no significant change in mIPSC

frequency or amplitude (Figure 7F). Thus, loss of NL3 causes a cell type-specific reduction

of synaptic inhibition onto D1-MSNs of the NAc – the same subpopulation of neurons

responsible for the behavioral impact of the NL3 deletion. Neither NL3 mutation affected

mIPSC frequency or amplitude in D1-MSNs of the dorsal striatum (Figures S6B-S6C),

consistent with the low expression of NL3 in these cells (Figure S4D).

Decreases in mIPSC frequency can be caused by a lower probability of GABA release, but

we detected no significant changes in the paired-pulse ratio of evoked IPSCs or short-term

plasticity (Figures S6D-S6E). Loss of NL3 in the hippocampus has been reported to disrupt

the regulation of GABA release by tonic endocannabinoid signaling (Foldy et al., 2013). In

D1-MSNs of the NAc, we found no evidence for tonic endocannabinoid regulation of

GABA release, as bath application of a CB1 receptor antagonist (AM251) did not alter the

evoked IPSC amplitude in either genotype (Figure 7G). To assess the presence and

functional integrity of presynaptic CB1 receptors, we applied a CB1 receptor agonist

(WIN55, 212), which caused a similar substantial reduction of evoked IPSC amplitudes in
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WT and NL3-KO mice (Figure 7H). These results suggest that endocannabinoid signaling at

inhibitory synapses onto D1-MSNs is not affected by deletion of NL3. We also failed to

detect changes in the synaptic concentration of released GABA (Figure S6F), or the number

of perisomatic inhibitory synapses on D1-MSNs (Figures S6G-S6I).

The fact that the NL3-KO mutation decreased inhibitory synaptic currents in D1-MSNs of

the NAc, coupled with the apparently normal function of excitatory synapses, implies that

loss of NL3 shifts the balance between synaptic excitation and inhibition in this cell type. To

directly address this possibility, we experimentally measured the ratio between GABA

receptor-mediated inhibition and AMPA receptor-mediated excitation (Figure 7I). After

recording an evoked AMPA receptor current at a holding potential of -40 mV, we

depolarized cells to 0 mV and blocked AMPA receptors with NBQX, leaving a residual

current mediated by monosynaptic inhibition through GABA receptors. The ratio of peak

GABA receptor- to peak AMPA receptor-mediated currents (i.e., the inhibition/excitation

ratio) was significantly reduced in D1-MSNs but not D2-MSNs from NL3-KO mice

(Figures 7J and 7K). Moreover, when we normalized the disinhibition of D1-MSNs by

targeted viral expression of DIO-Kir, we abolished the behavioral phenotypes caused by

deletion of NL3 (Figures S7A-S7G). Together, these results reveal a cell type-specific

imbalance of synaptic excitation and inhibition in D1-MSNs of the NAc caused by NL3

mutations associated with ASD (Figures S7H-S7K).

Discussion

Establishing causality between a genetic mutation, synaptic changes, circuit dysfunction,

and abnormal behavior is one of the greatest contributions mouse models can potentially

make to understanding neuropsychiatric diseases. Establishing such causality, however, has

been difficult. To forge these connections, we examined the specific synaptic cause of a

robust behavioral phenotype that is commonly shared by multiple mouse models of ASDs,

namely the enhanced formation of a repetitive motor routine as measured on the accelerating

rotarod (Table S1). We used a “top-down” approach by first localizing the brain region, then

the cell type, and finally the synaptic connection affected by different mutations of NL3, and

provided evidence that this particular synaptic change accounts for the overall behavioral

phenotype observed. Specifically, we found that the enhanced formation of a repetitive

motor routine is caused by loss-of-function of NL3 in D1-MSNs but not D2-MSNs of the

NAc but not the dorsal striatum, and that the NL3 loss-of-function acts by producing a

selective reduction of synaptic inhibition onto NAc D1-MSNs. To the best of our

knowledge, this is the first localization of an ASD-related behavioral change to a particular

type of synapse in a specific neuronal cell type and a defined brain region.

Several aspects of our results are surprising. First, the enhanced formation of repetitive

motor routines, observed in both NL3-KO and R451C mutant mice, did not appear to

involve either the dorsal striatum or the cerebellum. Although previous studies link synaptic

dysfunction in these brain regions to ASD pathophysiology (Baudouin et al., 2012; Peca et

al., 2011), we found no behavioral connection between these brain regions and the rotarod

phenotype we observed in NL3 mutant mice. Instead, our data show that loss of NL3 in D1-

MSNs of the NAc is both necessary and sufficient to enhance repetitive motor routines.
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While deletion of NL3 in cerebellar Purkinje cells (using L7-Cre) had no effect on rotarod

performance, it did cause hyperactivity in the open field test, another behavioral phenotype

shared by NL3-KO and R451C mutant mice. Rotarod performance was also unaffected by

deletion of NL3 in all neurons that express parvalbumin (using PV-Cre), but this

manipulation unexpectedly caused a decrease in open field activity – opposite to the

phenotype of NL3-KO mice or the deletion of NL3 in only Purkinje cells. These findings

demonstrate that deletion of a single molecule in different types of neurons can produce

heterogeneous and even opposite effects on behavioral output. This may help to explain the

diverse clinical presentations of individual patients carrying the same genetic mutation,

because individual differences in other genetic and environmental factors could render

various circuits differentially vulnerable to the impact of such mutations.

A second surprising aspect of our results is that our molecular manipulations of NL3

resulted in the same phenotypes independent of whether expression was constitutively

blocked throughout development, or conditionally deleted in adult animals. This unexpected

observation suggests that neuroligins perform a continuous synaptic function throughout

life, and not just during development. This observation adds to a growing literature

indicating that mouse models of neurodevelopmental disorders remain amenable to

interventions performed in adulthood (Baudouin et al., 2012; Penagarikano et al., 2011;

Zoghbi and Bear, 2012), reinforcing hopes that clinical treatment of these disorders in adult

patients could still be effective.

Finally, the role of NL3 in the NAc but not the dorsal striatum is also surprising, given

previous studies implicating the dorsal striatum in rotarod performance (Costa et al., 2004;

Yin et al., 2009). However, other studies linking striatal circuitry to rotarod learning used

manipulations that affect both dorsal and ventral striatum (Dang et al., 2006). While the

relatively enriched expression of NL3 in D1-MSNs of the NAc biases its contribution to this

brain region and cell type, our experiments with DIO-Kir show that both the NAc and the

dorsal striatum normally shape rotarod performance. D1-MSNs in the dorsal striatum were

important for overall motor coordination, whereas D1- and D2-MSNs in the NAc

contributed to rotarod learning and to open field activity in a bidirectional fashion.

These data support the theory that different striatal subregions interact dynamically over the

normal course of learning (Balleine and O'Doherty, 2010; Graybiel, 2008; Yin and

Knowlton, 2006), with the NAc gating the transition to dorsal striatal control of behavior

(Belin and Everitt, 2008; Haber et al., 2000). One intriguing possibility is that deletion of

NL3 accelerates this transition from ventral to dorsal striatal control, a process that may also

be facilitated by mutations directly affecting the dorsal striatum (Peca et al., 2011). This may

promote the acquisition of repetitive motor routines as well as rigid and inflexible habits

(Balleine and O'Doherty, 2010; Graybiel, 2008; Yin and Knowlton, 2006). While our results

do not bear directly on the cognitive process of habit formation, they do implicate

overlapping striatal circuitry, making this a fascinating topic for future research. Our results

also highlight the integrative function of the NAc in processing sensory and limbic

information to generate adaptive motor outputs (Groenewegen et al., 1996). Coupled with

evidence implicating the NAc in social behavior and reward processing (Trezza et al., 2011),
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our data suggest that synaptic dysfunction in the NAc may contribute to a wide array of

ASD symptoms.

Our slice physiology experiments revealed a remarkable degree of specificity in the synaptic

consequences of deleting NL3. We failed to detect any change in either excitatory or

inhibitory synaptic function in D2-MSNs, including normal mGluR-LTD at excitatory

synapses – a form of synaptic plasticity altered in cerebellar Purkinje cells of NL3-KO mice

(Baudouin et al., 2012). Our results thus indicate that dysregulation of mGluR-dependent

LTD is not an inevitable synaptic consequence of the NL3 deletion, and does not account for

the behavioral abnormality we have identified.

Excitatory synaptic function in D1-MSNs of the NAc also appeared normal, but we

identified a robust (∼50%) reduction of inhibitory synaptic currents. The cell type- and

subregion-specificity of this synaptic deficit is consistent with high expression of NL3 in

D1-MSNs of the NAc, as well as the behavioral consequences of conditional NL3 deletion

from these particular cells. The loss of synaptic inhibition was not mediated by altered

endocannabinoid signaling (Foldy et al., 2013), but led to a shift in the ratio between

synaptic inhibition and excitation, which we directly quantified in single neurons. The

disinhibition of D1-MSNs caused by deletion of NL3 would tilt the balance between

activation of MSN subtypes in the NAc. Our experiments using DIO-Kir demonstrated that

this imbalance can plausibly explain the behavioral phenotypes caused by the NL3-KO and

R451C mutations (Figure S7). These results reinforce a general scheme of striatal circuit

function in which D1-MSNs of the direct pathway promote the execution and repetition of

specific motor sequences, while D2-MSNs of the indirect pathway inhibit competing motor

sequences (Gerfen and Surmeier, 2011; Kreitzer and Malenka, 2008).

The balance between synaptic excitation and inhibition is thought to be a key factor

governing neural circuit function, and may be disrupted by a number of ASD-associated

genetic mutations (Bateup et al., 2013; Etherton et al., 2009; Tabuchi et al., 2007). However,

the nature of this disruption depends on the exact mutation, cell type, and synapse under

consideration, indicating that ‘excitatory/inhibitory balance’ must be interpreted in the

context of specific cells and circuits to have disease relevance. Indeed, the NL3-KO and

R451C mutations have previously been shown to enhance synaptic inhibition in the

hippocampus (Foldy et al., 2013) and cortex (Tabuchi et al., 2007). The opposite result we

observe in the NAc can likely be explained by a unique complement of other pre- and post-

synaptic cell adhesion molecules expressed at these different synaptic connections, which

work in concert to dictate synaptic properties.

In this respect, our results highlight the enormous diversity of synaptic phenotypes emerging

from ongoing descriptions of ASD mouse models. Different ASD-associated mutations can

cause opposite changes in some synaptic parameters (Auerbach et al., 2011), while a single

mutation can have distinct synaptic effects in different brain regions (present results, as well

as Etherton et al., 2011), or even at different synapses on the same type of neuron (Foldy et

al., 2013). This extraordinary complexity highlights a growing need to pinpoint the specific

brain regions, cell types, and synaptic connections most relevant to the behavioral impact of

ASD-associated mutations. We believe that deciphering the molecular circuitry behind these
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mutations could lead to unifying hypotheses regarding the diverse genetic causes of ASD.

Using this knowledge to guide investigations of synaptic and cellular mechanisms should

lead to the rational design of more specific and efficacious therapeutic interventions.

Experimental Procedures

Animals

NL3-cKO mice were produced using standard procedures (Figure S2). All other mice were

described previously (see Supplemental Methods for details). All analyses were performed

on male littermate mice (at least 4 weeks old for physiology and in vivo stereotactic

injections, and at least 6 weeks old mice for behavioral studies) after extensive backcrossing

to C57Bl/6J except when noted. All analyses were performed on mice whose genotype was

unknown to the experimenter. All procedures conformed to National Institutes of Health

Guidelines for the Care and Use of Laboratory Animals and were approved by the Stanford

University Administrative Panel on Laboratory Animal Care.

Behavioral Assays

Rotarod testing consisted of three trials per day over the course of 4 days. Each trial ended

when a mouse fell off, made one complete backwards revolution while hanging on, or

reached 300 s (Etherton et al., 2009). Digital videos of WT and NL3-KO mice on the rotarod

were recorded from behind to manually track the location of rear paws. Open field activity

tests (Grueter et al., 2010) and force plate actometer assays (Fowler et al., 2001) were

performed using standard approaches.

Molecular Methods

Quantitative RT-PCR and quantitative immunoblotting experiments were performed on

brain tissues derived from the same mice as described (Tabuchi et al., 2007; Aoto et al.,

2013). For single-cell transcriptional analyses, individual MSNs from D1-tdTomato BAC

transgenic mice were aspirated under DIC optics (see Supplemental Methods for details).

Stereotactic Injections

Stereotactic injections of AAVs were performed as described (Aoto et al., 2013).

Fluorescent protein tags expressed by each viral construct were used to confirm efficiency

and localization of AAV infection.

Electrophysiology

Parasagittal slices (250 μm) containing the NAc were prepared from wild-type and NL3-KO

mice carrying the D1-tomato reporter gene, permitting identification of red D1-MSNs and

non-fluorescent D2-MSNs. Whole-cell voltage- and current-clamp recordings were

performed at 30 °C using standard procedures (Grueter et al., 2010), with pharmacological

isolation of EPSCs and IPSCs as described in the Supplemental Methods.
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Immunohistochemistry

Vibratome sections from perfusion-fixed mouse brains were stained with antibodies for

immunofluorescence imaging on a Zeiss confocal microscope and analyzed in Image-J. The

number of VGAT positive puncta immediately adjacent to tomato-positive neurons were

counted by hand.

Data Analysis

All comparisons relate test to control data from littermate animals collected during the same

time period, and were analyzed statistically using ANOVA with a Type I error rate α = 0.05

(two-tailed). When ANOVA results are presented in figures, significant effects are

highlighted; non-significant comparisons are not identified.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Neuroligin-3 mutations commonly enhance repetitive motor routines in mice

• Repetitive behavior requires neuroligin-3 function in the nucleus accumbens

• Neuroligin-3 is selectively essential in D1 -dopamine receptor containing

neurons

• Neuroligin-3 deletion impairs synaptic inhibition on striatal medium spiny

neurons
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Figure 1. ASD-associated NL3 mutations enhance repetitive and stereotyped behaviors
(A) Summary of behavioral heterogeneity in ASD mouse models produced by NL3

mutations.

(B) Illustration of a mouse on a rotarod (left), and diagram of the rotarod testing protocol

(right). The effects of motor coordination and learning are illustrated below the protocol.

(C-F) Performance of littermate wild-type (WT, n=22) and NL3-KO mice (n=23) on the

accelerating rotarod. Time to fall off is presented at 4 to 40 rpm (C) and 8 to 80 rpm (D); the

terminal speed of rotation (E) was used to calculate initial coordination and learning rate (F).

Inset in C shows percentage of mice reaching maximum performance time (300 s) plotted as

a function of trial.

(G-J) Same as C-F, but comparing WT (n=19) and NL3-R451C mutant mice (n=16).

(K-N) Quantitative video analysis of acquisition rates of repetitive motor routines during

rotarod training (n=8 WT and 9 NL3-KO mice). K illustrates the analyzed parameters: step

location, step length, and step timing. L-N depicts the standard deviation (SD) of step

location (L), step length (M), and time between steps (N) calculated on trials 7 and 12

during rotarod training to measure variability in the motor routine (left panels), as well as

the correlation with time to fall off the rotarod (right panels).
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(O & P) Behavior of WT and NL3-KO mice in an open field test, showing time course of

activity across the entire session (O), as well as total distance travelled and the number of

ambulatory episodes (P). Insets depict movement path of individual mice 10-20 min after

the test begins.

(Q & R) Open field activity for WT and NL3-R451C mice.

(S-U) Analysis of stereotyped behaviors by measurements of the force plate variance as

percentage of body weight (%BW) during low-mobility bouts (LMB, S), hind limb jumps

(T), and rotational bias during locomotion (U) in WT (n=10) and NL3-KO mice (n=12).

Data are means + SEM; *significant difference between groups (ANOVA). Also see Table

S1 and Figure S1.
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Figure 2. Conditional removal of NL3 in cerebellar Purkinje cells does not affect rotarod
performance but causes hyperactivity
(A) Strategy for generation of NL3 conditional knockout (NL3-cKO) mice. Top, structure of

the 5′ end of the wild-type mouse Nlgn3 gene; middle, structure of the cKO Nlgn3 gene in

which loxP511 sites flank exons 2 and 3 (“flox”); and bottom, structure of the KO gene after

Cre-recombinase mediated deletion of exons 2 and 3.

(B) Levels of NL1, NL2, and NL3 mRNAs in brains of NL3-cKO mice without (n=4) or

with nestin-Cre (Nes-Cre, n=4).

(C) NL3 immunoblot of whole brain protein from NL3-cKO mice with and without Nes-

Cre.

(D & E) Analysis of littermate NL3-cKO mice without (n=16) or with Nes-Cre (n=16) in the

open field test. Data show the time course of activity across the entire session (D) as well as

the total distance traveled and the number of ambulatory episodes (E).

(F) Illustration of genetic cross to selectively delete NL3 from cerebellar Purkinje cells.

(G-J) Rotarod performance of NL3-cKO mice without (n=11) or with L7-cre expression in

cerebellar Purkinje cells (n=11). Time to fall off is presented at 4 to 40 rpm (G) and 8 to 80

rpm (H); the terminal speed of rotation (I) was used to calculate initial coordination and

learning rate (J).

(K & L) Behavior in a test of open field activity after Purkinje cell deletion of NL3.
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Data are means ± SEM; *significant difference between groups (ANOVA). Also see Figure

S2.
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Figure 3. Enhanced acquisition of repetitive motor routines requires NL3 expression in striatal
D1-MSNs but not D2-MSNs
(A) Illustration of genetic cross used to specifically delete NL3 from D1-MSNs.

(B-E) Rotarod performance of NL3-cKO mice without (n=16) and with D1-Cre (n=12).

Time to fall off is presented at 4 to 40 rpm (B) and 8 to 80 rpm (C); the terminal speed of

rotation (D) was used to calculate initial coordination and learning rate (E).

(F & G) Behavior of the same mice in a test of open field activity, showing time course of

activity across the entire session (F) as well as total distance travelled and number of

ambulatory episodes (G).

(H-N) Behavior of NL3-cKO mice without (n=8) and with A2a-Cre (n=10), which directs

Cre expression exclusively to D2-MSNs.

(O) Illustration of cytosol aspiration from individual D1- and D2-MSNs of the NAc (top),

and quantitative RT-PCR results from individual cells showing mRNA expression of cell

type-specific markers (bottom).

(P-R) Relative mRNA expression quantified as the ratio between D1- and D2-MSNs,

showing cell type-specific markers in the NAc (P) as well as neuroligins in the NAc (Q) and

dorsal striatum (R).

Data are means ± SEM; *significant difference between groups (ANOVA). Also see Figures

S3 & S4.
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Figure 4. Conditional deletion of NL3 in the NAc but not the dorsal striatum causes enhanced
rotarod learning
(A) Diagram of AAV constructs and stereotaxic injection of AAVs into the dorsal striatum

(DS) or the NAc (left), and representative images showing GFP from viral injection

localized to DS or NAc (right).

(B-E) Rotarod performance of NL3-cKO mice after injection of ΔCre (Control, n=15) or Cre

into the DS (n = 11). Time to fall off is presented at 4 to 40 rpm (B) and 8 to 80 rpm (C); the

terminal speed of rotation (D) was used to calculate initial coordination and learning rate

(E).

(F & G) Behavior of the same mice in a test of open field activity, showing time course of

activity across the entire session (F), as well as the total distance travelled and the number of

ambulatory episodes (G).

(H-M) Behavior of control mice (n=26) and NL3-cKO mice receiving injection of Cre into

NAc (n=9). For this comparison, the control group includes NL3-cKO mice receiving

injection of ΔCre as well as injection of Cre into DS.

Data are means ± SEM; *significant difference between groups (ANOVA). Also see Figure

S3.
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Figure 5. Behavioral phenotypes caused by NL3 loss-of-function are rescued by targeted
expression of NL3 in D1-MSNs of the NAc
(A) Schematic of Cre-dependent NL3 rescue construct (DIO-NL3), with illustration of

rescue in D1-MSNs of the NAc (lower left) and image of Venus expression in the NAc

(lower right) as well as co-localization of rescue construct with D1 -tomato (inset).

(B-E) Rotarod performance of mice with DIO-NL3 injection in NAc, including a control

group lacking Cre (n=10) and those carrying D1-Cre (n=9). Time to fall off is presented at 4

to 40 rpm (B) and 8 to 80 rpm (C); the terminal speed of rotation (D) was used to calculate

initial coordination and learning rate (E).

(F and G) Behavior of the same mice in a test of open field activity, showing time course of

activity across the entire session (F) as well as total distance travelled and number of

ambulatory episodes (G).

Data are means ± SEM.
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Figure 6. Subregion- and cell type-specific behavioral functions of D1- and D2-MSNs
(A) Schematic of Cre-dependent Kir2.1 construct (DIO-Kir), and confocal images from

mice carrying D1-tomato showing co-localized expression in D1-Cre (lower left) and

mutually exclusive expression in A2a-Cre (lower right).

(B and C) Examples of current-clamp recordings from uninfected (B, left) and infected (B,

right) D2-MSNs in a double transgenic mouse carrying D1-tomato and A2a-Cre, and plot of

the average number of spikes fired in response to a constant depolarizing current (C, left), as

well as summary graphs of the average input resistance (IR) (C, upper right) and rheobase

(C, lower right).

(D-F) Rotarod performance of WT (n=15) and D1-Cre mice (n=16) with DIO-Kir2.1

injections in the NAc, showing time to fall off at 4 to 40 rpm (D) and 8 to 80 rpm (E), as

well as the terminal speed of rotation (F).

(G) Time course of open field activity in the same mice as D-F.

(H-K) Rotarod performance and open field activity of WT (n=12) and A2a-Cre mice (n=13)

with DIO-Kir2.1 injections in the NAc.

(L-O) Rotarod performance and open field activity of WT (n=9) and D1-Cre mice (n=15)

with DIO-Kir2.1 injection in the dorsal striatum (DS).

(P-S) Rotarod performance and open field activity of WT (n=7) and A2a-Cre mice (n=12)

with DIO-Kir2.1 injection in the DS.
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(T-V) Summary graphs comparing the effects of DIO-Kir2.1 in different striatal cell types

and subregions. Data are presented as percentage of WT level on the first rotarod trial (T),

last rotarod trial (U), and open field activity (V).

Data are means ± SEM; *significant difference between groups (ANOVA).
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Figure 7. NL3 deletion decreases inhibitory synaptic transmission only in D1-MSNs but not D2-
MSNs of the NAc
(A and B) Representative traces of mEPSCs in WT and NL3-KO cells (top), cumulative

distribution of mEPSC inter-event intervals (lower left; inset shows average mEPSC

frequency) and cumulative distribution of mEPSC amplitudes (lower right; inset shows

average mEPSC amplitude) in WT (n=23) or NL3-KO (n=23) D1-MSNs (A), and WT

(n=15) or NL3-KO (n=17) D2-MSNs (B).

(C and D) EPSC changes upon bath application of the group I mGluR agonist DHPG (100

μM), recorded in WT (n=7) or NL3-KO (n=6) D1-MSNs (C), and in WT (n=5) or NL3-KO

(n=9) D2-MSNs (D).

(E and F) Representative traces, frequency, and amplitude of mIPSCs recorded in WT

(n=17) or NL3-KO (n=17) D1-MSNs (E), and WT (n=12) or NL3-KO (n=15) D2-MSNs

(F).

(G and H) Evoked IPSC amplitudes during bath application of the endocannabinoid receptor

CB1 antagonist AM251 (2.5 μM) in WT (n=5) or NL3-KO (n=3) D1-MSNs (G), or during

bath application of the CB1 agonist WIN55, 212 (1 μM) in WT (n=7) or NL3-KO (n=8) D1-

MSNs (H).

(I) Illustration of the protocol used to measure the inhibition/excitation ratio.
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(J and K) Representative traces of evoked AMPAR- and GABAR-mediated currents in WT

or NL3-KO cells (top), amplitudes of AMPAR and GABAR currents (lower left), and

average inhibition/excitation ratio (lower right) from WT (n=11) or NL3-KO (n=9) D1-

MSNs (J), and WT (n=8) or NL3-KO (n=7) D2-MSNs (K).

Data are means ± SEM; *significant difference between groups (ANOVA). Also see Figures

S5, S6 & S7.
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