8 research outputs found

    Eicosanoid and cytokine responses to bacterial infection

    Get PDF
    Infectious diseases remain some of the most serious health threats facing the world. The immune system is equipped to initiate a rapid and specific response to foreign invaders of the body, with its ultimate aim being to protect an organism from injury and disease. Eicosanoids, including prostaglandins and leukotrienes, are a family of lipids that play key roles in inflammation including helping leukocytes fight infection. Cells of the innate immune system including tissue macrophages, neutrophils and sentinel dendritic cells are major contributors of local eicosanoids. In mammals an inflammatory insult will result in a cytokine cascade whereby tumour necrosis factor α (TNF-α) is released, followed by interleukin-1β (IL-1β) and then IL-6. Downstream of these cytokines, others are released that serve as potent chemoattractants to induce migration of neutrophils and macrophages to the site of infection. It is known that exposure to varying bacterial components results in a different profile of lipids and cytokines, and by characterising mediator signals it may be possible to define biomarker fingerprints predictive for early bacterial infections. To analyse this, a combination of a targeted lipidomic approach and cytokine immunoassays were employed to identify neutrophil and macrophage responses to individual bacterial components and the whole organism. Work in this thesis has identified potential markers of bacterial infection, such as 12- HETE, 14-HDOHE and TNF-α, which, along with future advances, could be used to develop novel strategies for clinicians, nurses and primary care staff to analyse patients suspected of bacterial infection at the bedside. Work here provides an insight into how the eicosanoid and cytokine storms are generated alongside each other to accompany classic inflammation during specific bacterial infection. The ability to distinguish between species of bacteria causing infection could prove invaluable, reducing the time taken to establish the cause of infection, ultimately leading to better patient outcomes

    Innate immunology in COVID-19-a living review. Part II: dysregulated inflammation drives immunopathology

    Get PDF
    The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) poses a global health crisis and will likely continue to impact public health for years. As the effectiveness of the innate immune response is crucial to patient outcome, huge efforts have been made to understand how dysregulated immune responses may contribute to disease progression. Here we have reviewed current knowledge of cellular innate immune responses to SARS-CoV-2 infection, highlighting areas for further investigation and suggesting potential strategies for intervention. We conclude that in severe COVID-19 initial innate responses, primarily type I interferon, are suppressed or sabotaged which results in an early interleukin (IL)-6, IL-10 and IL-1β-enhanced hyperinflammation. This inflammatory environment is driven by aberrant function of innate immune cells: monocytes, macrophages and natural killer cells dispersing viral pathogen-associated molecular patterns and damage-associated molecular patterns into tissues. This results in primarily neutrophil-driven pathology including fibrosis that causes acute respiratory distress syndrome. Activated leukocytes and neutrophil extracellular traps also promote immunothrombotic clots that embed into the lungs and kidneys of severe COVID-19 patients, are worsened by immobility in the intensive care unit and are perhaps responsible for the high mortality. Therefore, treatments that target inflammation and coagulation are promising strategies for reducing mortality in COVID-19

    Innate immunology in COVID-19?a living review. Part I: viral entry, sensing and evasion

    Get PDF
    The coronavirus infectious disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains a world health concern and can cause severe disease and high mortality in susceptible groups. While vaccines offer a chance to treat disease, prophylactic and anti-viral treatments are still of vital importance, especially in context of the mutative ability of this group of viruses. Therefore, it is essential to elucidate the molecular mechanisms of viral entry, innate sensing and immune evasion of SARS-CoV-2, which control the triggers of the subsequent excessive inflammatory response. Viral evasion strategies directly target anti-viral immunity, counteracting host restriction factors and hijacking signalling pathways to interfere with interferon production. In Part I of this review, we examine SARS-CoV-2 viral entry and the described immune evasion mechanisms to provide a perspective on how the failure in initial viral sensing by infected cells can lead to immune dysregulation causing fatal COVID-19, discussed in Part II

    The role and uses of antibodies in COVID-19 infections: a living review

    Get PDF
    Coronavirus disease 2019 has generated a rapidly evolving field of research, with the global scientific community striving for solutions to the current pandemic. Characterizing humoral responses towards SARS-CoV-2, as well as closely related strains, will help determine whether antibodies are central to infection control, and aid the design of therapeutics and vaccine candidates. This review outlines the major aspects of SARS-CoV-2-specific antibody research to date, with a focus on the various prophylactic and therapeutic uses of antibodies to alleviate disease in addition to the potential of cross-reactive therapies and the implications of long-term immunity

    T cell phenotypes in COVID-19 - a living review

    Get PDF
    COVID-19 is characterized by profound lymphopenia in the peripheral blood, and the remaining T cells display altered phenotypes, characterized by a spectrum of activation and exhaustion. However, antigen-specific T cell responses are emerging as a crucial mechanism for both clearance of the virus and as the most likely route to long-lasting immune memory that would protect against re-infection. Therefore, T cell responses are also of considerable interest in vaccine development. Furthermore, persistent alterations in T cell subset composition and function post-infection have important implications for patients’ long-term immune function. In this review, we examine T cell phenotypes, including those of innate T cells, in both peripheral blood and lungs, and consider how key markers of activation and exhaustion correlate with, and may be able to predict, disease severity. We focus on SARS-CoV-2-specific T cells to elucidate markers that may indicate formation of antigen-specific T cell memory. We also examine peripheral T cell phenotypes in recovery and the likelihood of long-lasting immune disruption. Finally, we discuss T cell phenotypes in the lung as important drivers of both virus clearance and tissue damage. As our knowledge of the adaptive immune response to COVID-19 rapidly evolves, it has become clear that while some areas of the T cell response have been investigated in some detail, others, such as the T cell response in children remain largely unexplored. Therefore, this review will also highlight areas where T cell phenotypes require urgent characterisation

    Metabolically Primed Multipotent Hematopoietic Progenitors Fuel Innate Immunity

    No full text
    Following infection, hematopoietic stem and progenitor cells (HSPCs) support immunity by increasing the rate of innate immune cell production but the metabolic cues that guide this process are unknown. To address this question, we developed MetaFate, a method to trace the metabolic expression state and developmental fate of single cells in vivo . Using MetaFate we identified a gene expression program of metabolic enzymes and transporters that confers differences in myeloid differentiation potential in a subset of HSPCs that express CD62L. Using single-cell metabolic profiling, we confirmed that CD62L high myeloid-biased HSPCs have an increased dependency on oxidative phosphorylation and glucose metabolism. Importantly, metabolism actively regulates immune-cell production, with overexpression of the glucose-6-phosphate dehydrogenase enzyme of the pentose phosphate pathway skewing MPP output from B-lymphocytes towards the myeloid lineages, and expansion of CD62L high HSPCs occurring to support emergency myelopoiesis. Collectively, our data reveal the metabolic cues that instruct innate immune cell development, highlighting a key role for the pentose phosphate pathway. More broadly, our results show that HSPC metabolism can be manipulated to alter the cellular composition of the immune system
    corecore