35 research outputs found

    Ecology and Geography of Human Monkeypox Case Occurences Across Africa

    Get PDF
    This is the published version. The original is available from http://www.jwildlifedis.org/content/48/2/335.full.pdf+htmlAs ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping

    Mapping Monkeypox Transmission Risk through Time and Space in the Congo Basin

    Get PDF
    Monkeypox is a major public health concern in the Congo Basin area, with changing patterns of human case occurrences reported in recent years. Whether this trend results from better surveillance and detection methods, reduced proportions of vaccinated vs. non-vaccinated human populations, or changing environmental conditions remains unclear. Our objective is to examine potential correlations between environment and transmission of monkeypox events in the Congo Basin. We created ecological niche models based on human cases reported in the Congo Basin by the World Health Organization at the end of the smallpox eradication campaign, in relation to remotely-sensed Normalized Difference Vegetation Index datasets from the same time period. These models predicted independent spatial subsets of monkeypox occurrences with high confidence; models were then projected onto parallel environmental datasets for the 2000s to create present-day monkeypox suitability maps. Recent trends in human monkeypox infection are associated with broad environmental changes across the Congo Basin. Our results demonstrate that ecological niche models provide useful tools for identification of areas suitable for transmission, even for poorly-known diseases like monkeypox.This research was supported by the National Institutes of Health grant 1R01TW008859-01 ("Sylvatic Reservoirs of Human Monkeypox"). Use of trade, product, or firm names does not imply endorsement by the United States Government. The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention

    Ecology And Geography Of Human Monkeypox Case Occurrences Across Africa

    Get PDF
    As ecologic niche modeling (ENM) evolves as a tool in spatial epidemiology and public health, selection of the most appropriate and informative environmental data sets becomes increasingly important. Here, we build on a previous ENM analysis of the potential distribution of human monkeypox in Africa by refining georeferencing criteria and using more-diverse environmental data to identify environmental parameters contributing to monkeypox distributional ecology. Significant environmental variables include annual precipitation, several temperature-related variables, primary productivity, evapotranspiration, soil moisture, and pH. The potential distribution identified with this set of variables was broader than that identified in previous analyses but does not include areas recently found to hold monkeypox in southern Sudan. Our results emphasize the importance of selecting the most appropriate and informative environmental data sets for ENM analyses in pathogen transmission mapping

    Orthopedic bone plates : evolution in structure implementation technique and biomaterial

    No full text
    With many important developments over the last century, nowadays orthopedic bone plate now excels over other types of internal fixators in bone fracture fixation. The developments involve the design, material and implementation techniques of the plates. This paper aims to review the evolution in implementation technique and biomaterial of the orthopedic bone plates. Plates were initially used to fix the underlying bones firmly. Accordingly, Compression plate (CP), Dynamic compression plate (DCP), Limited contact dynamic compression plate (LC-DCP) and Point contact fixator (PC-Fix) were developed. Later, the implementation approach was changed to locking, and the Less Invasive Stabilization System (LISS) plate was introduced as a result. Finally, a combination of both of these approaches has been used by introducing the Locking Compression Plate (LCP). Currently, precontoured LCPs are mainly used for bone fracture fixation. \ud In parallel with structure and implementation techniques, numerous advances have occurred in biomaterials of the plates. Titanium and stainless steel alloys are now the most common biomaterials in production of orthopedic bone plates. However, regarding the biocompatibility, bioactivity and biodegradability characteristics of Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics, these materials are considered as potentially suitable for plates. However, due to poor mechanical properties, they have very limited applications. Therefore, further studies are required in future to solve these problems and make them feasible for heavy-duty bone plates

    Prediction of GMA welding characteristic parameter by artificial neural network system

    No full text
    Nowadays, demand for automated Gas metal arc welding (GMAW) is growing and consequently need for intelligent systems is increased to ensure the accuracy of the procedure. To date, welding pool geometry has been the most used factor in quality assessment of intelligent welding systems. But, it has recently been found that Mahalanobis Distance (MD) not only can be used for this purpose but also is more efficient. In the present paper, Artificial Neural Networks (ANN) has been used for prediction of MD parameter. However, advantages and disadvantages of other methods have been discussed. The Levenberg–Marquardt algorithm was found to be the most effective algorithm for GMAW process. It is known that the number of neurons plays an important role in optimal network design. In this work, using trial and error method, it has been found that 30 is the optimal number of neurons. The model has been investigated with different number of layers in Multilayer Perceptron (MLP) architecture and has been shown that for the aim of this work the optimal result is obtained when using MLP with one layer. Robustness of the system has been evaluated by adding noise into the input data and studying the effect of the noise in prediction capability of the network. The experiments for this study were conducted in an automated GMAW setup that was integrated with data acquisition system and prepared in a laboratory for welding of steel plate with 12 mm in thickness. The accuracy of the network was evaluated by Root Mean Squared (RMS) error between the measured and the estimated values. The low error value (about 0.008) reflects the good accuracy of the model. Also the comparison of the predicted results by ANN and the test data set showed very good agreement that reveals the predictive power of the model. Therefore, the ANN model offered in here for GMA welding process can be used effectively for prediction goals

    A Phylogeographic Investigation of African Monkeypox

    No full text
    Monkeypox is a zoonotic disease caused by a virus member of the genus Orthopoxvirus and is endemic to Central and Western African countries. Previous work has identified two geographically disjuct clades of monkeypox virus based on the analysis of a few genomes coupled with epidemiological and clinical analyses; however, environmental and geographic causes of this differentiation have not been explored. Here, we expand previous phylogenetic studies by analyzing a larger set of monkeypox virus genomes originating throughout Sub-Saharan Africa to identify possible biogeographic barriers associated with genetic differentiation; and projected ecological niche models onto environmental conditions at three periods in the past to explore the potential role of climate oscillations in the evolution of the two primary clades. Analyses supported the separation of the Congo Basin and West Africa clades; the Congo Basin clade shows much shorter branches, which likely indicate a more recent diversification of isolates within this clade. The area between the Sanaga and Cross Rivers divides the two clades and the Dahomey Gap seems to have also served as a barrier within the West African clade. Contraction of areas with suitable environments for monkeypox virus during the Last Glacial Maximum, suggests that the Congo Basin clade of monkeypox virus experienced a severe bottleneck and has since expanded its geographic range

    Phylogeography of the heavily poached African common pangolin (Pholidota, Manis tricuspis ) reveals six cryptic lineages as traceable signatures of Pleistocene diversification

    No full text
    International audienceKnowledge on faunal diversification in African rainforests remains scarce. We usedphylogeography to assess (i) the role of Pleistocene climatic oscillations in the diversificationof the African common pangolin (Manis tricuspis) and (ii) the utility of ourmultilocus approach for taxonomic delineation and trade tracing of this heavily poachedspecies. We sequenced 101 individuals for two mitochondrial DNA (mtDNA),two nuclear DNA and one Y-borne gene fragments (totalizing 2602 bp). We used atime-calibrated, Bayesian inference phylogenetic framework and conducted characterbased,genetic and phylogenetic delineation of species hypotheses within African commonpangolins. We identified six geographic lineages partitioned into western Africa,Ghana, the Dahomey Gap, western central Africa, Gabon and central Africa, all divergingduring the Middle to Late Pleistocene. MtDNA (cytochrome b + control region)was the sole locus to provide diagnostic characters for each of the six lineages. TreebasedBayesian delimitation methods using single- and multilocus approaches gavehigh support for ‘species’ level recognition of the six African common pangolin lineages. Although the diversification of African common pangolins occurred duringPleistocene cyclical glaciations, causative correlation with traditional rainforest refugiaand riverine barriers in Africa was not straightforward. We conclude on the existenceof six cryptic lineages within African common pangolins, which might be of major relevancefor future conservation strategies. The high discriminative power of themtDNA markers used in this study should allow an efficient molecular tracing of theregional origin of African common pangolin seizures
    corecore