3,296 research outputs found

    Symplectic N and time reversal in frustrated magnetism

    Full text link
    Identifying the time reversal symmetry of spins as a symplectic symmetry, we develop a large N approximation for quantum magnetism that embraces both antiferromagnetism and ferromagnetism. In SU(N), N>2, not all spins invert under time reversal, so we have introduced a new large N treatment which builds interactions exclusively out of the symplectic subgroup [SP(N)] of time reversing spins, a more stringent condition than the symplectic symmetry of previous SP(N) large N treatments. As a result, we obtain a mean field theory that incorporates the energy cost of frustrated bonds. When applied to the frustrated square lattice, the ferromagnetic bonds restore the frustration dependence of the critical spin in the Neel phase, and recover the correct frustration dependence of the finite temperature Ising transition.Comment: added reference

    Three dimensional generalization of the J1J_1-J2J_2 Heisenberg model on a square lattice and role of the interlayer coupling JcJ_c

    Get PDF
    A possibility to describe magnetism in the iron pnictide parent compounds in terms of the two-dimensional frustrated Heisenberg J1J_1-J2J_2 model has been actively discussed recently. However, recent neutron scattering data has shown that the pnictides have a relatively large spin wave dispersion in the direction perpendicular to the planes. This indicates that the third dimension is very important. Motivated by this observation we study the J1J_1-J2J_2-JcJ_c model that is the three dimensional generalization of the J1J_1-J2J_2 Heisenberg model for S=1/2S = 1/2 and S = 1. Using self-consistent spin wave theory we present a detailed description of the staggered magnetization and magnetic excitations in the collinear state. We find that the introduction of the interlayer coupling JcJ_c suppresses the quantum fluctuations and strengthens the long range ordering. In the J1J_1-J2J_2-JcJ_c model, we find two qualitatively distinct scenarios for how the collinear phase becomes unstable upon increasing J1J_1. Either the magnetization or one of the spin wave velocities vanishes. For S=1/2S = 1/2 renormalization due to quantum fluctuations is significantly stronger than for S=1, in particular close to the quantum phase transition. Our findings for the J1J_1-J2J_2-JcJ_c model are of general theoretical interest, however, the results show that it is unlikely that the model is relevant to undoped pnictides.Comment: 11 pages, 10 figures. Updated version, several references adde

    Bose-Einstein condensation in antiferromagnets close to the saturation field

    Full text link
    At zero temperature and strong applied magnetic fields the ground sate of an anisotropic antiferromagnet is a saturated paramagnet with fully aligned spins. We study the quantum phase transition as the field is reduced below an upper critical Hc2H_{c2} and the system enters a XY-antiferromagnetic phase. Using a bond operator representation we consider a model spin-1 Heisenberg antiferromagnetic with single-ion anisotropy in hyper-cubic lattices under strong magnetic fields. We show that the transition at Hc2H_{c2} can be interpreted as a Bose-Einstein condensation (BEC) of magnons. The theoretical results are used to analyze our magnetization versus field data in the organic compound NiCl2NiCl_2-4SC(NH2)24SC(NH_2)_2 (DTN) at very low temperatures. This is the ideal BEC system to study this transition since Hc2H_{c2} is sufficiently low to be reached with static magnetic fields (as opposed to pulsed fields). The scaling of the magnetization as a function of field and temperature close to Hc2H_{c2} shows excellent agreement with the theoretical predictions. It allows to obtain the quantum critical exponents and confirm the BEC nature of the transition at Hc2H_{c2}.Comment: 4 pages, 1 figure. Accepted for publication in PRB

    Spin Diffusion in Double-Exchange Manganites

    Full text link
    The theoretical study of spin diffusion in double-exchange magnets by means of dynamical mean-field theory is presented. We demonstrate that the spin-diffusion coefficient becomes independent of the Hund's coupling JH in the range of parameters JH*S >> W >> T, W being the bandwidth, relevant to colossal magnetoresistive manganites in the metallic part of their phase diagram. Our study reveals a close correspondence as well as some counterintuitive differences between the results on Bethe and hypercubic lattices. Our results are in accord with neutron scattering data and with previous theoretical work for high temperatures.Comment: 4.0 pages, 3 figures, RevTeX 4, replaced with the published versio

    Dynamical properties of ultracold bosons in an optical lattice

    Full text link
    We study the excitation spectrum of strongly correlated lattice bosons for the Mott-insulating phase and for the superfluid phase close to localization. Within a Schwinger-boson mean-field approach we find two gapped modes in the Mott insulator and the combination of a sound mode (Goldstone) and a gapped (Higgs) mode in the superfluid. To make our findings comparable with experimental results, we calculate the dynamic structure factor as well as the linear response to the optical lattice modulation introduced by Stoeferle et al. [Phys. Rev. Lett. 92, 130403 (2004)]. We find that the puzzling finite frequency absorption observed in the superfluid phase could be explained via the excitation of the gapped (Higgs) mode. We check the consistency of our results with an adapted f-sum-rule and propose an extension of the experimental technique by Stoeferle et al. to further verify our findings.Comment: 13 pages, 5 figure

    Interacting Boson Theory of the Magnetization Process of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain

    Get PDF
    The low temperature magnetization process of the ferromagnetic-antiferromagnetic Heisenberg chain is studied using the interacting boson approximation. In the low field regime and near the saturation field, the spin wave excitations are approximated by the δ\delta function boson gas for which the Bethe ansatz solution is available. The finite temperature properties are calculated by solving the integral equation numerically. The comparison is made with Monte Carlo calculation and the limit of the applicability of the present approximation is discussed.Comment: 4 pages, 7 figure

    Dimensional crossover in dipolar magnetic layers

    Full text link
    We investigate the static critical behaviour of a uniaxial magnetic layer, with finite thickness L in one direction, yet infinitely extended in the remaining d dimensions. The magnetic dipole-dipole interaction is taken into account. We apply a variant of Wilson's momentum shell renormalisation group approach to describe the crossover between the critical behaviour of the 3-D Ising, 2-d Ising, 3-D uniaxial dipolar, and the 2-d uniaxial dipolar universality classes. The corresponding renormalisation group fixed points are in addition to different effective dimensionalities characterised by distinct analytic structures of the propagator, and are consequently associated with varying upper critical dimensions. While the limiting cases can be discussed by means of dimensional epsilon expansions with respect to the appropriate upper critical dimensions, respectively, the crossover features must be addressed in terms of the renormalisation group flow trajectories at fixed dimensionality d.Comment: 25 pages, Latex, 12 figures (.eps files) and IOP style files include

    Collective modes for an array of magnetic dots in the vortex state

    Full text link
    The dispersion relations for collective magnon modes for square-planar arrays of vortex-state magnetic dots, having closure magnetic flux are calculated. The array dots have no direct contact between each other, and the sole source of their interaction is the magnetic dipolar interaction. The magnon formalism using Bose operators along with translational symmetry of the lattice, with the knowledge of mode structure for the isolated dot, allows the diagonalization of the system Hamiltonian giving the dispersion relation. Arrays of vortex-state dots show a large variety of collective mode properties, such as positive or negative dispersion for different modes. For their description, not only dipolar interaction of effective magnetic dipoles, but non-dipolar terms common to higher multipole interaction in classical electrodynamics can be important. The dispersion relation is shown to be non-analytic as the value of the wavevector approaches zero for all dipolar active modes of the single dot. For vortex-state dots the interdot interaction is not weak, because, the dynamical part (in contrast to the static magnetization of the vortex state) dot does not contain the small parameter, the ratio of vortex core size to the dot radius. This interaction can lead to qualitative effects like the formation of modes of angular standing waves instead of modes with definite azimuthal number known for the insolated vortex state dot

    Spin diffusion and relaxation in three-dimensional isotropic Heisenberg antiferromagnets

    Full text link
    A theory is proposed for kinetic effects in isotropic Heisenberg antiferromagnets at temperatures above the Neel point. A metod based on the analysis of a set of Feynman diagrams for the kinetic coefficients is developed for studying the critical dynamics. The scaling behavior of the generalized coefficient of spin diffusion and relaxation constant in the paramagnetic phase is studied in terms of the approximation of coupling modes. It is shown that the kinetic coefficients in an antiferromagnetic system are singular in the fluctuation region. The corresponding critical indices for diffusion and relaxation processes are calculated. The scaling dimensionality of the kinetic coefficients agrees with the predictions of dynamic scaling theory and a renormalization group analysis. The proposed theory can be used to study the momentum and frequency dependence of the kinetic parameters, and to determine the form of the scaling functions. The role of nonlocal correlations and spin-liquid effects in magnetic systems is briefly discussed.Comment: 10 pages, RevTeX, 3 EPS figures include

    Spin and Spin-Wave Dynamics in Josephson Junctions

    Get PDF
    We extend the Keldysh formulation to quantum spin systems and derive exact equations of motion. This allows us to explore the dynamics of single spins and of ferromagnets when these are inserted between superconducting leads. Several new effects are reported. Chief amongst these are nutations of single S=1/2 spins in Josephson junctions. These nutations are triggered by the superconducting pairing correlations in the leads. Similarly, we find that on rather universal grounds, magnets display unconventional spin wave dynamics when placed in Josephson junctions. These lead to modifications in the tunneling current.Comment: (14 pages, 5 figures
    corecore