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We extend the Keldysh formulation to quantum spin systentsdamive exact equations of motion. This
allows us to explore the dynamics of single spins and of feagnets when these are inserted between super-
conducting leads. Several new effects are reported. Chiehgst these are nutations of single S=1/2 spins
in Josephson junctions. These nutations are triggeredebguperconducting pairing correlations in the leads.
Similarly, we find that on rather universal grounds, magdétplay unconventional spin wave dynamics when
placed in Josephson junctions. These lead to modificatiotieitunneling current.

PACS numbers: 71.27.+a, 71.28.+d, 77.80.-e

I. INTRODUCTION central core of many pioneering works, while spin dynamics
was relegated a relatively trivial secondary role. In theeunt
a@\rticle, we report on exact new non-stationary spin dynamic
and illustrate how a quantu$ = 1/2 spin is affected by the
Josephson current. As a consequence of the Josephson cur-

There is a growing interest in a number of techniques th
allow detection and manipulation of a single spin. A par-

tial list includes optical detection of electron spin reance ; o ) . i
(ESR) in a single moleculd][1], tunneling through a quan_rent, spins exhibit non-planar precessions while subgetie

tum dot [2], and, more recently, the ESR-scanning tunnelingeXtemal magnetic field. As well known, a single quantum spin

. - : tic field exhibits circular Larmor precession d@bou
microscopy (ESR-STM) techniquE [B, 4]. Interest in ESR-TN @ Magne : e
STM lies in the potential of detection and manipulation of athe direction of the field. As we report here, when the spin is

single spin [[6/16]- an ability which is crucial to spintrogic Iurther_e_mbedde? ?etw?endt\;vo superctonfdulctlngl Ieaqltfa;mquan—
and quantum information processing. Much work also ad+um pairing correlations [ead to new out-ol-plane longt

dressed coupling, feedback effects, and decoherence in-a Comotion, much alike that displayed by a classical mechanical

pled electronic-vibrational systems, such as nanomechhni top .W'” arise. We term this effect théoscl-:‘phson. nutation
oscillators and local vibrational modé [7]. In particulspin- Similar effects occur when a ferromagnetic slab is placed be

tronic and quantum computing applications greatly intiri tween two superconducting leads. We outline how transport

interest in Josephson junctions. In a previous publicd&n is, in turn, modulated by this rather unusual spin dynamics.

four of us studied the effect of the supercurrent on a macroJ "€ Coupling of the spin to the supercurrent leads to an effec

scopic spin cluster (of spis > 1) precessing in the pres- tive non-local in time interaction of the single spin withetf.

ence of a magnetic field when placed in a Josephson junctiolﬁeldySh contour calculations illustrate that a non-looaline

to find new spin dynamics. InJ[9], these systems were eX;smgle fermion action is also found in situations whereia th

amined anew wherein variations in the DC current were pre_single spin is r(_epl_aced by an And_erson im.purlj.t_;] [15]. As well
dicted for all systems harboring a spin of any finite skze known, in the_l'm't Qf smaI_I hopp_mg amplltudes to a_nd from
In the current article, we complemeht [8] by studying, foe th an Anderson impurity, the impurity attains a Kondo like char
first ime, the explicit dynamics afingle quantunt = 1,/2 acter much like that of the single spin which is the focus af ou

spinsin Josephson junctions to find new intriguing dynami_attentlon._ nge_we conS|der_the origin of_thls rather generi
cal effects for which we provide quantitative expressidrse _non-l_ocallty In time present in the dynam_lcs of a J_osephs_on
single spin § = 1/2) dynamics which we study here dif- junction. En route to deriving this new spin dynf.;lmllcs we il-
fers significantly from the the large magnetic clustgér$ 1) IusFrate that even in the presence of non—Ioca! In time A4nter
dynamics studied ir[[8]. In the current article, we furthes e actions, certain variants of the classical equations ofanot

amine spin wave dynamics in ferromagnets when placed "t?ec_ome trivially exact by virtue_ of compactness of Fhe spin
Josephson junctions variables. An elaborate extension of these ideas will be de-

The analysis of spins embedded in Josephson junctions héaslled elsewherd [16].

a long and rich history. Early on, Kulik[lL0] argued that spin
flip processes in tunnel barriers reduce the critical Josaph
current as compared to the Ambegaokar-Baratoff lifnit [11].
More than a decade later, Bulaevskii et ALl [12] conjectured
thatm-junctions may form if spin flip processes dominate. The The main goal of the current publication is to report on the
competition between the Kondo effect and the superconduspin and spin wave dynamics (of single spins and of magnetic
tivity was elucidated in[[13]. A nice review of experimental systems, respectively) in Josephson junctions.

works on certain aspects of magnetic nanoparticles in Jesep To achieve this aim, we will initially (in SectiorlSQITIY)

son junctions is found if.[14]. Transport properties forrtiesl ~ extend the non-equilibrium Keldysh formalism to address

II. OUTLINE OF THE ARTICLE
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these problems. In Sectidnflll), we illustrate that everthie
presence of effective non-local of time interactions of e sp
with itself (such as those borne by the interaction of a gingl
spin with a Josephson current), the equations of motion un-
dergo a trivial modification. In Sectidn{lV), we rewrite ge
equations within the standard Keldysh basis best suited for
non-equilibrium problems. SectiohsIIILJV) may be seen as
independent extensions of basic facets of the non-eqjuilibr
Keldysh formalism for a spin system.

In SectionY), we apply the rather general formalism de- T-iB
veloped in SectionE{JILIV) to the specific problem of a sin-
gle S = 1/2 spin in a Josephson junction (with a time inde-
pendent potential difference between the two superconduckE!G. 1: The standard Keldysh contour. The tirfieand7” are taken
ing leads). We start, in subsectibi{V/ A), in writing down t© be—co andgo respectively. The form of Fhis contour W!|| be heav-
the relevant Hamiltonian of such a Josephson junction harly employed in our work when time ordering various spin prot.
boring a single spin. In subsectibn(V B), we briefly high-

light the natural time scales in the problem- which will in- a trivial change of qeometry wherein at least one of the su-
deed come to the fore in the detailed solution which we will 9 9 y

later expose. In the all-important subsectigmV C), we high perconductors forming the Josephson junction is replaged b

light the origin of the effective non-local in time interamts a planar superconductor. In Sectiih(X), we write down the

of the spin with itself. Here, we integrate out the lead eIec-S > 1 equations of motion for general magnets and antifer-

! . : X . romagnetic chains. The non-uniform temporal evolution of
trons to find the effective spin only action harboring such-no each of the spin-waves is hiahliahted in the resultant &miut
local in time interactions. These non-trivial interactosre b gntig

the reason that we needed to develop and extend (Sectiox\ée conclud_e the main text, in SectibnlXI), by highlighting
(IMINQ7)) the Keldysh formalism to a very general spin sys- ourconclusm_ns. . . .

. : . . In Appendix A, we briefly discuss several experimental
tem with such interactions. In subsectionll D), we InVOkemanifestations of our effect and highlight a proposed exper
the results of SectiorSOILIV) to the resultant effectis@in- iment which may verify our redictignsg prop P
only action of Sectiofif/TC) to write down the equations of Y P :
motion for the spin. In subsectidn{Y E), we solve these equa-
tions of motion to Iov_vest orderlln the spin-dependent tl_J-nneI I1l. EXACT SPIN-1/2 EQUATIONS OF MOTION ON
ing amplitude. Detailed technical aspects of the solution o KELDYSH CONTOURS
which subsectiofifVIE) dutifully relies on have been reledat
to appendices B and C. The perturbative solution to the equa-

tions of motion- the final equations of subsection{V E)- formgeneral spin-1/2 system having two (or more) local and non-

one of the main core results of the current publication. lnlocal Spin-spin interactions at different times. In thisrwae
subsectioi{VF), we examine the physical meaning of this S%m Iopthepnon—e uilibrium Keldysh techni .ue Within this
lution of the single spin problem to unearth several new pre: ploy 9 y que.

dictions for thisS = 1/2 system. In this subsection, we aim framework, the spin operators on both up and down portions

to further arm the reader with an intuitive understanding fo oithe (Ifeldysh) contour of F'_g' 1are normallzgd qnd satisty
(t), Sa(t")] = 0. In what briefly follows, we will dispense

the physical origin of these new effects. Some of these pre[-S_u ) .

dicted effects (and our prediction of nutation in particutee ~ With operator forrr(]ulart][ons ":‘jnd emploi_a p?th mtegr_ﬁl l;eprhe
highlighted in FigB). In subsectid@VI), we examine tre b Sentation. Towards this end, our working horses will be the
havior of the system for a single spin of magnitutie- 1/2. C'P; spin coherent variables)[L7,[18] wherein the spins are
In the largeS > 1 limit, we recover our very different semi- ePresented by
classical spin§ — o) results of[B].

Next, in Sectior{\Vl), we discuss a variation of the single
spin problem wherein an AC voltage bias is applied acrosgwith S the spin magnitude). Here and throughout, wéiset
the Josephson junction. Our main result are the predictions. In Eq.[1),a,b =1, | and we assume an implied summation
of specific time dependent spin dynamics displaying an infi-over repeated indices. The vectéig are theab components
nite number of harmonics and new DC lock-in effects. Theof the three Pauli matrices. The components; | code for
predicted supercurrentin this system is also discussed. a two component complex spinor subject to the normalization

In Section[¥II), we examine the problem of a ferromagnetconstraint,z|* + |21l2 = 1. By glancing at Eq[{1), we note
in a Josephson junction. In the spin-wave approximation, wehat a knowledge of' specifies the two component spinor
find that each spin-wave mode displays some of the unusualnly up to a global multiplicative phase.
effects predicted in subsecti@n{V E_V F) for the single spin As well appreciated, in a spin coherent basis, the Berry
problem. The predicted spin wave dynamics and associatgghases associated with the spin coherent states are theaet a
transport (current), are furnished. In Sectio(I1X), wecdiss ~ of the spherical triangle spanned by the spin as it moves®n th
simple extensions of our results to other systems genelogted Bloch sphere. The latter may be expressed ir(itig basis as

Imt—

We start by deriving the equations of motion for a very

S = Sz Gz (€N}
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Sperry =i [dtY, 210:2, [14,[18]. For the benefit of read-
ers unfamiliar with this formalism, we provide in19] a qkic
derivation for this form of the Berry phase.

any dz(t) leads to no change to the value &f the range
of integration inZ = [ Dz €' is unchanged. This, in
turn, mandates that®)s = 0 [16]. Next, we consider

g

We now assume the action contains the single spin termyi — ,+;i 35 ang explicitly illustrate that its expectation

dz*

—n, [ dtS,-h describing a single spin in an external magneticy 51 vanishes,A?) = 0. To this end, we write the spinors,

field set byﬁ. The parityn, = +1 is fixed by the direction of
the contour4),, = 1, n4own = —1. We further include a non-

local in time spin interaction,n, [ dt [ dt’ Kap(t, 1) S, (1) -
§b(t’). The kernelsk ., encapsulate non-local temporal de-
pendence. The generalization to higher order terms ig$itrai

longhand, in terms of real and imaginary components=
(2h.—iz},, 2h.—iz3, ) and the measu®zDz*§(|z|*—1) =
Dzb Dzl D23, D28 6(]2h, Pt |2k, 2+ 25 2+ 23—
1). Here and in what briefly follows we suppress a uniform
Keldysh contour index. The expectation valg€) for each

forward and leads to no qualitative change. With the Berry¥@lué of the spinindex,= .y, 2, is an integral over bilinears

phase included, the general action in z and hence amounts to a sum of integrals of the type
- — 1 1 2 2
S = 22'Sna/dtz;6tza — S/dtnaha cZn02q lop = /DzReDzlszReDzlm
08
— 1 2 1 2 2 12 2 2 iS
+52nanb/dt/dt’Kab(t,t’)ZZ(t)ﬁza(t) 2 (1) (t).(2) 6(12gel”™ + [21m|”™ + [2Re|” + [27m|” — 1)2a@6 )
Varying the action, Here, the indicesx and g span the four possible values
(1 Re, 1 Im,2 Re,2 Im). An immediate consequence of the
oS , - vanishing of the expectation val14§§> for any cyclic coor-
525, (1) Sl (21&2‘“’@) ~ e Gurzan(t) dinatex is that all integrals of the forni,..s vanish. An

inspection of(A?) reveals that the contributions of all inte-
+77b/dt'Kab(ta t) 25, ()55 206 (1) - szw(t)) grals of the typd, cancel identically when = = (the only
_ place where integrals of the typg—_s appear). Similarly,
=N, (2i6tzau(t) — H(t) - Evvzav(t))- () (A) = (:255072) = 0. The vanishing A’) = (A'f) = 0
imply that their difference,

Kap(t, 1)) = Kap(t, 1) + Kpa(t', 1) 0:<[57Soj 207 — 2 o 05
ab\l, ab\l, bal\l (Szaa(t) oo oo 6220’@)

H(t)=h+ Sna/dt/Kab(t’ )z, (1) 5205 (t)- (4 where the Keldysh contour index)(is reinstated.
Next, we explicitly insert Eq[{3) into EQI(8). As a conse-

Next, we briefly generalize Ehrenfest’s theorem to situaquence of the SU(2) algebra of the Pauli matrices, we find
tions such as the one of relevance here where a non-local that for each Keldysh contour index= top/bottom,

time action is present. A full discussion of this theorem for

general systems will be presented elsewHere [16]. In witat fo o8,
lows, the expectation value of any quantidyevaluated with { ot
the actionS is denoted by

Here,

1)s, (8)

Vs = —(H x 8,)s. (9)

Eqg.[9) is none other than the equation of motion for preces-
1 /112 is sion of the spinS in the instantaneous field given By of
(As = Z /DZDZ ozl = DA™, ©®) Eqg.[@). We find that such classical equations of motion for a
. 5 ” ) N nonlocal in time action are exact in the quantum arena. [For
with Z = [ DzDz*5(|2[* — 1)e™ the associated partition affectionados of parafermion methods, we briefly note as an
function. Similar definitions apply, with a trivial replavent  asjde that although throughout we employed the bosonic spin
of the measure when the action is a functional of one of moregherent path integral representation, a similar resiltivis
real fields{x (¢)}. In the current context;, code for the real  jf the spinorsz were Grassmann variables (a net even num-
orimaginary parts of the complex spinor componentsext,  per of permutations of the spinor coordinates are involved i
we note that for any cyclic coordinatethe expectation value proving Eq®)).] The bulk of the paper will be devoted to

of the variational derivative, a solution of EqIP) for different realizations of a Josephs
59 —i g junction_ system. . .
<$>S = 7[6Z Jodty =0 (6) We will momentarily dispense with the Keldysh contour in-

_ _ ~dices. Due to the commutation relatiofis S = iS5, although
In the above, by the compactnessiofn integrating all possi-  the field # contains a piece which is linear i, the planar

zi(t) = w¢(t). This in turn lead to the vanishing expecta- to a linear equation in planar spin componetfts (i = z, y)
tion value given in Eq{6) for all non-singular actions. Ana \hich then must have the solution

ogously, this result follows by noting that for compact co-
ordinates, the transformation:(t) — x(t) + dx(¢)], with (Si(t)) = U, (t)(S;(0)). (10)



LA-UR-04-6501 February 2, 2008 submitted to Physical Review B

We now invoke symmetry constraints. An external magnetic
field - in the action (Eq2)) lifts thesU (2) spin rotational
symmetry of the free spin leading in turn to a lovi&fl) sym-
metry of rotations about the external magnetic field axishSu
a symmetry is trivially encapsulated by the operdt6(6) ro-
tating (S > by an angle about the z (or magnetic field) axis.
As a consequence, the evolution operattt) of Eq.[ID)
must commute withR*(#). This, in turn, dictates that if the
solution is in the form of ECL{10), then the time evolution op
eratorU (t) must have the form

FIG. 2: Magnetic spin coupled to two superconducting leads.

and

—

t o ) _
v = | ~a p0) | Q) 0= (G (xSt [ dacuSH0S0)

Kyuw + Kyg + Kau + Kaa Kyu— Kud+Kdu Kad
Similarly, due the azimuthal rotational symmetry encapsu- - — Kud4Kdu+Kdd
lated by R*(0), the expectation valuéS. (¢)) must be inde- ( i (ts)
Sl

pendent of(S,(0)) and (S,(0)). This form will indeed be ¢! (t2) ))s. (14)
qu

borne out for our full Keldysh problem.

An average oveexpl[iS] is implicit in ( )s. As emphasized
earlier, these are not merely saddle point equations but are
rather exact. In the above, although the time arguments were
not explicitly written down,K,s serves as a shorthand for

Within the non-equilibrium Keldysh formalism it is often K, 5(¢, t2).
advantageous to apply a simple linear transformation fiwen t
basis of up and down contour fields to the symmetric and an-

IV. THE KELDYSH BASISEQUATIONS OF MOTION

tisymmetric linear combination of these fields. E.g., fo th V. SINGLE SPIN DYNAMICSIN A JOSEPHSON
spin JUNCTION
- 1 - -
Scl = E(Sup + Sdown)u A. Thesystem
Squ = (Sup — Saown)- (12) Our system is sketched in FIg. 2. It consists of two identi-

cal ideal superconducting leads coupled each to a singte spi

the various correlation functions- all simply related te #d- the.en_tire system s further subjected to a vyeak e’“erf‘a* mag
vanced, retarded, and “Keldysh” correlators. The subtrip netic field. In FigP) . » denote the chemical potentials of
“cI” and “qu” of Eq.@32) coding for “classical’ and “quan- the left and right IeadsB is a weak external magnetic field
tum” suggest an intimate relation to classical and quantundlong the z-axis, and = (S, S,, S-) is the operator of the
Langevin like dynamics. We refer the uninitiated reader tolocalized spin. The wave-functions of our system are super-
excellent texts such als |20[, [21] where the origin of thigli  Positions of the direct product of states of the left conteet

is explored in depth. In EqIL2) we trivially generalizesthi impurity spin, and the right contact,

change of basis to quantum spin systems. In this basis, when

taken as operators in EG.{12) [prior to a passage to a path int W) = frsr(lvL) ® [bs) ® [¢r)). (15)

gral representation], the spins no longer obey canoniaal co

mutation relations the spins no longer obey canonical comA tunneling matrix couples these different states. The Hami
mutations relations (e. 9lS,u, S.1] # 0) and are no longer tonian of this system reads

normahzed(Sup + Sdown may correspond to a spin-triplet, H = Ho + Hr,
S =1, or to a spin singletS = 0). Thus, we may not directly Mo —Hr 4 Hr — uB.S

employ theC P, representation in this basis. For the current 0=+ TR = pbzo,
purposes, the equations of motion in this basis may be derive Hr = Z /2 c;]; [Todm/ + T Gaar - 5‘} CLpa
from Eq.[®) for the up and down contour spins, “

The utility of this basis has its roots in the natural form for

kpa,al
d . - - o +h.c(16)
= {7 Sa + (hx Sa)i + [ dtzeijn(S(1)S7, (1))
KyutKuya—Kan—Kiga Kuuw—Kya—Kau+Kdga
< Kuu"'Kudi'Kdu"'Kdd Kuu_Kudinu_Kdd )
8

Here, H; and Hpr are the Hamiltonians in the left
and right superconducting leads, Whilé,m (Cika) cre-
ates (annihilates) an electron in the lead a in the state
(52'1(152) >>57 (13) k with spin a in the right/left lead forz = L/R

St (t2) respectively. Hrry = Xy ck(p) oCh(p),e T
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z 2 ok(p)ionor Do (k(p))cz(p)pcik(_p)p, + h.c] ,where we of freedom andl'x denotes time ordering along the Keldysh

denote the electron creation (annihilation) operatorséri¢ft ~ contour. The labe, denotes integration along the Keldysh

(L) lead byc.‘];a (cko) while those in the right (R) lead by, contour as shown in E|dj](1). We first take a partial trace in
(¢y0). The quantities: (p) are momentag the spin index, Z over .the lead fermions (the bgth).to obtain an effectlve
while e, » andA, (k(p)) are, respectively, the single par- SPIn action. qu Josephson contribution to the resultifig sp

ticle energies of conduction electrons, and the pair pitkint ~ action reads—5 ¢, dt ¢, dliﬁTKHEE(t)a HHr(S(t), 1)),

the leads. In EQT16), the componedits,  are entries of the Much in the spirit of Refs[[23. P4. 5]. For brevity, we set
three Pauli matriceéo®,,, 0" ,,02,,). Inthe current pub- Ao =35 ¢}, cpor. The tunneling Hamiltonian of a phase
lication we consider s-wave symmetry pairing in the super{voltage) biased junction

conducting leads.Herg, is the magnetic moment of the spin. Ho = [Todoer + TiS l

With the spin embedded in the tunneling barrier, the conduc- T = [20000” T 215" Too’
tion electron tunneling matrix becomes, spin-dependéht [6 X (Apor exp(it)2) + AL, exp(—i/2)) . (18)
T = [Toi +T,S - a.]. HereTy is a spin-independent tunnel-
ing matfix element a”"_”"l is aspin-dependen_tmatrix element classically (i.e. ¢ is the same on the upper and the lower
originating from the direct exchange couplidigof the con- o ches'of the Keldysh contour), the contributionZ}? to

duction electron spi@, to the localized spirb. Henceforth, 55 yanishes. The mixed contribution T,T; vanishes due to

we will omit the c subscript. We take both tunneling matrix {he singlet spin structure of the s-wave superconductoe Th
elements{y and77) to be momentum independent. This is only surviving contribution reads

not a crucial assumption and is merely introduced to simplif

In the presence of a dc voltage bias= 2¢Vt. If ¢ is treated

notations. Typically, from the expansion of the work funati T? , ,

for tunneling, 7 ~ .J/U, whereU is the height of a spin- T2 ) dt - dt’[S(t) - oap] [S(t') - 05,]

independent tunneling barriér[22]. A weak external maignet , ;

field B. ~ 100 Gauss will not influence the superconductors * (<TKAaﬁ(t)A5'y (t'))e +(A,0— A ,—¢))(19)
where we keep only the Josephson (off-diagonal) terms. The

and we may ignore its effect on the leads. The operétd?
linked to an external environment, the coupling between th&Pin structure simplifies for the s-wave case:

;e + ()
2

is the (single electron) number operator. When the jundson

junction and the environment induces fluctuations of the su- ) , - ,
perconducting phase difference across the jundiign)). T3 ji dtjé{ dt" [S(t) - S| [iD(¢, )], (20)
where  the kernel iD(t,t') is dictated by
5 Pysceal Time Scales (Trc Ay (AL (1) 75 4 (A6 — AT, —¢). The

operatorsA are bilinears in Fermi operators and thus the
The Josephson junction with the spin has two time scalesgorrelator (Tx A1 (t) Ay (') will amount to a sum of a
(i) The Larmor precession frequency of the spii. =  product of two terms: a product of two normal Green's
gusB = h, whereg, up are the gyromagnetic ratio and Bohr function G' and a product of two pair correlatos. Thus,
magneton of the conduction electron, respectively. (iie Th generalizing the known effective tunneling action for a
frequencyw; = 2¢V, with e the electronic charge, charac- spin-less junction[[23[_24,_P5] to the new spin-dependent
terizes the Josephson effect when an external voliageap-  arena, we obtain
plied across the junction.

Stunnel = _2j§ dtjé dt' a(t,t") [TOQ +T2S(t) - 5’(1&’)]
K K

C. TheEffective Action cos [¢(t) - (b(t’)]
2
Josephson junctions are necessarily embedded into ekterna - -
electrical circuits. This mandates that the dynamics eifi —2jé dt?{ at' p(t,t') [TOQ —TES(t) - S(t/)}
depends on the superconducting phase differeiiteacross K K ,
the junction. The evolution operator is given by the reaeti cos [M] (21)
path integral 2
- where ia(t,t') = G, t)G{',t) and ip(t,t') =
Z= /D¢DS exp [i5] . (17)  F(t,¢')FT(t,t'). Here, the Green functions
N — . !/
The net action of EQ{17) is given by = [Scivcuit (@) + G(t, 1) = _’Z <Tcha(t)Cle(t ))s (22)
Sepin (9) + Stunne1(¢, S)]. The effective actiom, e contri- k
bution describes the junction itself. If all external fielts the F(t,t) = =iy (Tkaq(t)e i (), (23)
same on both forward and backward branches of the Keldysh k
contour () then Z = TrTx exp|—i ¢, dtHp(t)] = 1, Fi(t,t) = _iZ<TK CLT(U CT—ki(t/» ] (24)
where the trace is over both the electron and the spin degrees "
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We now express the spin action on Keldysh contour in thehe pieces together, we find that

basis of coherent states
2

A
S5 Ry 4\ _ oy : oy
Sspin:_fdth's'i‘SWZNW- (25) AE(E—t) = —0(t t)ZQEkEpSln[(Ek+Ep)(t -
K

k,p

(30)
The second, Wess-Zumino-Novikov-Witten (WZNW), term The kernel3? (¢ — ¢') decays on (short) time scales of order
in Eq.[Z%) depicts the Berry phase accumulated by the Spi®(r/A). Similarly,
which we discussed earlier in the coherent spin representa-
tion wherein it amounts to a kinetic bilinear- the first terin o A2
Eq.@2)). In the calculations that follow we replace the spin 8% (t —#)=—i»_ 5F. 5. %
measureD S by the coherent spin state measiireDz* and kp CRTP
rely on our derived exact equations of motion. We now per-
form the Keldysh rotation of Eq{12), defining the values ofHenceforth, we will often employ the shorthand
the spin and the phase variables. For the superconductin@™* (t,t') = p%/¥(t — t'). Looking at EqI3L), we

phase, we introduce (with notations following Refs] [23)25 see that the Fourier transford (w) vanishes for frequencies
w < A. This is not so for the retarded correlatGf

(26) due to the presence of the theta function. For now, we
ignore the fluctuations in the superconducting phase and set

Gup(t) = Pdown(t) = d(t) = wyt with wy; = 2eV (and thus

x = 0). In this, “classical”, limit

(B + Bp)(t —11)] . (31)

1
(b = §(¢up + (bdown) ,y X = ¢up - ¢down .

Within the Keldysh framework, the Josephson currentisigive

by
) = 2205 27)  Stunner =4 / dt / dt' BR (VT2 S (1) - Su(#)i(t,1)
Do ox(t)"
with @, the unit fluxon (with full units restoredp, = hc/e +/dt/dt’TfﬁK(t,t’)Squ(t) - Squ(t')j(t,t')(32)

with ¢ the speed of light). With these definitions in hand, the
tunneling part of the action reads With (¢, £') = cos ¢>(t)ﬁ;¢>(t/).

Stunnel = Sa + SB ) (28)

where the_ normal (quasi-p_article) tunneling pé&rt is ex- D. TheEquationsof Motion

pressed via the Green function§ = 6(t—t')(a” —a<) and

af(w) = a” + a<, whereia” (t,t') = G (t,t')G<(t,t) , , , )

andia<(t,t') = G<(t,t)G> (', 1). Similarly the Josephson- With th(_e action at our d|sposa_l, we now write down the ex-
tunneling partSs is expressed via the off-diagonal Green’s act equations Of_ motions and give a solution, exact to order
functionss® = 0(t — t')(5> — <) andBX (w) = B> + B< O(T}). Extracting, in the up-down contour basis, the co-
where i (t,t') = F>(t,t\Ft>(t,¢)) andig<(t,t’) = efficients, Kq(t,¢') of the Sq() - S,(t') terms in EqI(3P),
F<(t,t)F1<(¢,t'). The pair correlator'<(,t') are derived ~ Constructingi,;(t, ¢') from Eq.[3), and invoking Eq.(13), we
from F>(t, ') by the interchange ofwith ¢’. In the current  find

article, we focus on the interaction between the superntirre

and the spin. 0= <i§cl +hxSy
In Eq. [Z1), the normal-tunneling pas$t, is obtained from dt

Sp by the following substitutions/ K (¢, ¢') — o®/% (¢, 1), +4|T1|2/dt’j(t,t’)ﬁR(t,t’)gcl(t’) x S.a(t)

o(t') — —o¢(t'), andx(t') — —x(¢'). The Keldysh terms

(those includingg” anda ), which normally give rise to ran- 9 Lt N oK e NG ra

dom Langevin terms (see, e.g., REf][25]) are, in our cage, su +2/T] dt'j (6, 1)B7 (1, 4) Squ(t’) x Sei(t)
pressed at temperatures much lower than the supercongluctin ) R a -

gap (' < A), due to the exponential suppression of the cor- +[11] /dt J& )BT ) Squ(t’) X Sqult))s

relatorsg® (w) anda (w) atw < A.

To obtain3% we start from the Gor’kov Green functions = <%§cz +hx S+ Tt + Tyuct + Tyu—qu)s. (33)
. A —q —¢
Fo(tt) = =iy Yo Brlt=), The final subscrips serves to remind us that this is the path
k F integral average computed with the actiSh The various
. A Bt subscripts of the integrals denote the terms that they orig-
F>T " tl _ = —iBR(t—t') 29 p g a Y g
(&) sz: 28 ’ (29) inate from (e.g9u—c = 4|T1 | [dt’j(t, t")BE(t, ) Sa(t') x

S.(t)). In Appendices B and C we outline, in detail, the eval-
where the quasi-particle ener@y, = \/A? + €, with ¢, the  uation of the various terms in EG{33). We will now solve
free-conduction-electron dispersion in the leads. Pyiihof  Eq.[33) to ordeO(T?).
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E. Spin Dynamicsin a Josephson Junction: An Exact Solution with
to O(T?
) N i ZA? (0)) (2w} + w3 + Bwrw,)

wrptwrLyg — 2Ek;E (Ek +Ep)2

With all of the ingredients in place, we may now solve
Eq.(33) to determine the spin dynamics@®7?). Hence- T Z ) (2w} + w3y — 3wrwy)
forth, we will examine throughout the observable “clasica Avr - 2EkE (Ex + Ep,)?
component of the spilﬁcl. To make the expressions more )
appealing we will dispense with the classical “cl” substrip Bu, 4w, = |T1|? Z )) (2w} + w3 + 3wrwy)
Similarly, the actionS subscript in all expectation values will ! 2EkE (BEy + Ep)? ’
be omitted as no time ordering subtleties appear below. We

N(2w? + w? — 3wrwy)

expand the spin as =
p p UJL wJ |T | Z 2EkE (Ek + EP)Q (38)
(S()) = (So(t)) + (35(t)). (34) Allin all, to O(T?), the evolution of the planar spin com-
ponents can be expressed in the format of EQ.(JL0,11) with
Here, S, is the solution to the (Larmor) problem of a sin- o 9 A?
gle free spin in an external magnetic field. We computed the ~ P(t) = coswrt +[T1] > SEE(Er+E)2
. . wEp(Ex + Ep)
integrals borne by these zeroth order Larmor components in kp
subsectioli{XIT). Similarly§S(t) are the contributions borne " ((Zw% + w3 4 3wrwy) cos(wp + wy)t
by the retarded and Keldysh correlations. These correstion w? — (wr, + wy)?
will lead to higher order contributions ifl}) which are ir- 2w2 4+ w2 — 3wrw ) cos(wr — w )t
relevant to ourO(T¢) solution. We insert EJ(34) into the (2 ig — (fj ]_) " )(2 L= ws) ), (39)
equations of motion (EqE.(B3)) and retain all terms to order L L 7
O(|T1]?). This trivially leads to and
2y A?
d q(t) = sinwrt + |Ty|
2(6S,) —wi (08,) + (L) =0, 2 2B E, (Ex + Ey)?
d (2w? +w? + 3wrwy) sin(wy, + wy)t
a7 05} +wi(08e) + (1) =0, «( Wl — (wr T wy)?
d 2w +w? — i —wy)t
—(8S.) + (L) = 0. (35) 4 Lt 3““”)“(‘2‘“ wj) ) (40)
wi — (wp —wy)

This concludes our solution for the dynamics of a spin
Here, I,—. , . is thea direction component Offcz o+ in a Josephson junction. Our analysis throughout centered
on Josephson junctions composed of s-wave superconductors
(see our starting point Ef.{R0)). Slightly different quant
tative results appear for other pairing symmetries (athayi
in theory, a determination of the pairing symmetry from ob-
servations of the spin/spin-wave dynamics and associdted e

Iqu 1) Which was computed in the prewous subsection to or-

der O(|Ty|%). We see that the integralSplay the role of a
driving force. Integrating, we find that

) A2w; fects). The deviations from simple Larmor precessionsare f

(65:(1)) = |T1[*(1 — cosw,t) [Z 3 stronger for triplet (i.e. odd angular momenta) supercendu

k.p EiEp(Ey + Ep) tors

AQ
+(S2(0)) ) 5] (36)
& EvEp(Ex + Ep) ; . ;
P F. Physical Consequences: Josephson Nutationsand Other
Dynamical Effects

Differentiating the equation of motion fo(dS; ) in We now discuss the physics behind our exact@@?))

Eq.(33) and inserting the equation of motion {65, .) we  solution. Our solution provides testimony (and to revanti-
immediately obtain the equation of motion of a driven har-tativepredictions) for several, inter-related, intriguing dyma
monic oscillator. A simple solution yields ical effects. We outline these below.

e Josephson Nutations:

In any system harboring a continuous rotatiotiél ) sym-
B metry about a certain axis (z), the orbital angular momentum
+ Z coswpt + 27”2 sin wyt) (37) .LZ is a constant of moti(_)n. Needl.ess t_o say, the same triv-

wi — wi wr —wn ially holds true for any spin system in whi¢H, S.] = 0 with

<6Sm(t)) =cycoswrt+ cosinwrt

Wn
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H the system Hamiltonian. In the presence of an external
magnetic field along (or defining) the z-axis, as in the Larmor

problem, the Hamiltoniat/ = —h.S, commutes withS, and 0 61

the longitudinal magnetizatiof$. (¢)) is a constant of motion.

In our system with non local in time interactions triggergd b ( A'» 92

superconducting pair correlations, such a conservatioméa

longer holds. Perusing EE.{36), we find that the gpimates

above its average value. This occurrence forshe 1/2 is

similar to that reported il 8] for macroscopic spin cluster

S > 1. Here, however, the quantum fluctuations are pro-

found for theS = 1/2 case and lead to strong deformations

of the nutation shape. The physical engine behind the nuta-

tions is the small time separation between the two tunneling

electrons forming the Cooper pair. As the “first” electron-tu , ) ) , ,

nels through, it exerts a torque on the spin. A certain tirterla ~'C: 3 The resulting spin motion on the unit sphere in theegai
. . . = case. As in the motion of classical spinning top, the spiritgteh

(of orderh/A with dimensions restored) after the sgithas  nqyjations along the polar direction. As a consequencatahele-

already revolved a small amount, the opposite spin member Ghent with the tunneling electrons, the magnitude of the spimot
the Cooper pair tunnels through and exerts a torque of an oRonstant- the spin further “breaths” in and out as it nutates

posite sign on the spiﬁ. Due to the small time lag between
the two tunneling electrons, the two opposite sign torques e
erted onS by the two opposite sign spins of the tunneling
singlet do not cancel and lead to a net effect. This origin igsee Eq[(I5)). In any pure (i.e. unentangled) state of a spin
made evident in the retarded correlatighd which further  1/2 problem, the surf{S,)?+(S,)?+(S.)?] = 1/4- the spin
spark a non-vanishing driving foréé.;_.;) along the z-axis. expectation values lie on the Bloch sphere. Entanglement in
Mathematically, all of this results as the tunneling partad  a spin-1/2 problem such as ours is marked by a contraction,
the action contains terms which trivially do not consefve  [(S,)? + (S,)% + (S.)?] < S? = 1/4. Any single spin expec-
In the aftermath, this led to an effective time dependertfor tation value within the Bloch sphergy|S|)| < S, denotes
acting onS.. Its form may be seen by examining the integralan expectation value computed in a multi-particle state
(I.) appearing in EQ{35). The latter is the z-component ofyhich is entangled. In the case hér spans the single spin
the integrals(Z.;_.;) and(l,,—.;) appearing in Eq¥{66.57). and the tunneling electrons. Such a time dependent contrac-
(Needless to say, if both members of the Cooper pair shargon in the norm of(S) relative to the Bloch radius is evident
the same polarization (as in triplet superconductors) #@mn  in our exact solution of EqEQIONI]EI] £0] B4, 36).
greater effect results.)

A manifestation of the resulting dynamical effect as a con-

sequence of these effective external forces in converitisna A notable facet of the dynamics given by the effects dis-
wave) Josephson Junctionsis vividly seen in[Eg.(36). We haveyssed above are non-uniform planar precessions. We find
derived similar expressions via an independent densityixnat that within the plane transverse to the applied field dicegti
approachl[26]. An exaggerated schematic of this effectds pr the azimuthal angle describing the spin orientatipfr) —
vided in Fig.[B) which, qualitatively, is none other thareth tan~1((S,(t))/(S(t))) is no longer a linear in time. This ef-
standard illustration for classical rigid body nutation®/e  fect bears, once again, strong semblance to nutationssn cla
find that such motions now appear in the quantum arena fogjca| rigid body dynamics. In the Larmor problem of a free
a singleS = 1/2 particle! The precise shape of our trajec- spin in a magnetic fieldp(t) = wyt. In our case, the pre-
tories, however, is markedly different from that exhibited  cession about the applied field direction is no longer unifor
classical rigid rotors. Its form is encapsulated in EJS]B1,38) or, alternativbiy,

e Spin Contractions and Effective Longitudinal Fields: Eqs.[IDCOC3E20). Once again, mathematically, themsigi

Glancing at Eq[{87), the reader will see that the effectivethis effect are rooted in the effective planar (xy) compdaen

- =

(I;u—c1) can be seen to dilate the spin (the uniform contribu-of the effective forcel) appearing in EQ{35). The explicit
tion proportional to<§(t)> in the second equality of Ef67)) form of this effecti\_/e force is given by the sum o_f t_he two_ir_l-
and in unison to effectively emulate a time dependent magtegrals evaluated in EqE.{d8.167) and whose origin exjlicit
netic field 57Lej,f x ¢, cos¢(t) along the z-axis in the spin lies, once again, in the same non-local in time correlations

e Nonlinear planar precession:

equation of motiond<§>/dt —a <§> « 57%”. Both of borne by the superconducting correlations.
these effects were noted il [9]. In HGI67), we explicitlese  In summary, all of the above qualitative findings for the
their origin. The uniform contraction is triggered by an@mt  problem a singleS = 1/2 spin inserted in a Josephson

glement of the tunneling electrons with atir= 1/2 particle.  junction are made vivid in ou®(T?) exact solution. From
We now very briefly elaborate on the physics of this state£qs.[ILICII20) for the planar spin components and from
ment for the benefit of general readers. The expectation vakqs [Z#[3b) for the longitudinal spin we clearly see how all

-,

ues(S) amount to weighted sums over all possible stétes  of these effects come into play.
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VI. RETARDED CORRELATIONSIN GENERAL SPIN §

DYNAMICSIN A JOSEPHSON JUNCTION

The equation of motion, EJ(9), is valid for all spigs
Much of our formalism follows with no change. We now ex-
amine the integral$f> in the general spit$ problem.

We find that for a spin of sizé&, the integral Z,u 1) Un-
dergoes no change relative to fs= 1/2 form- Eq.[EY) re-

second equality of Eq.{67) which was described in the previ:
ous section (spin contractions and the presence of anigéect
longitudinal field) undergoes no change for the general Spin
case. .

Next, we evaluatél.;_.;). For large spinsS > 1, the

product(S(#) x S(t)) is well approximated by the vector

product of average&S(t)) x (S(¢')). Then, the approach of
Ref. [8] is well justified and we can obtain tdesephson nu-
tationsof a big spin. For anys and¢’ > ¢ we obtain

(Sut') x Sa(t))s
S (15,0, 5.0} 4 leoswr (¢ — ) ~ 1]

— {S:(t),S.(1)} 4 sinw(t' —t)] é,

+ [{S2(t),S:(t)} 4 [1 — coswp(t' — t)]

— {Sy(t), S:(t)}+ sinw (' — t)] ey

+(252() + 252(1)) sinwp(t — t)é. > (41)
where{...}; denotes an anticommutator. In tlfe= 1/2

case, the integral stemming from these vectorial produet co
relations is parallel to the z—axi$fcl_cl> ||é.. For spins of size
S > 1/2, however, as we see from HgqJ41), the plananj
components also come to the fore and lead to retarding corr
lation (5%)
the driving force(I.;_.;..) along the z-axis, much unlike the
S =1/2 case is time dependent.

For general spins of sizé > 1/2, both retarded{’®) and
Keldysh (3%) are non-zero along any spin direction. All of
the effects discussed in subsection{V F) are present.

It is noteworthy to discuss the scaling of all terms with the

spin sizeS. As evident from Egl{41), the integraﬂl,m
spawned by retarded correlations scalesas Similarly, as
seen from Eq{@7), whose form holds for arbitratythe ef-
fective driving force< qu—cl) generated by Keldysh correla-

tions (%) scales ass, i.e. (Iqu «) « S. Thus, for large

spinsS > 1, the retarded contributions overwhelm stochastic

Keldysh contributions. In the classical limi§, — oo, only
the retarded contributions remal [8].

VIl. SPIN TRIGGERED AC EFFECTS

effects in EqI(33). Furthermore, the magnitude of

We now briefly sketch matters for an ac voltage bias
wherein the potential drop is oscillatory in time and the-cor
responding phase differencedét) = Asin Qt. To make the
physics more transparent, we omit any dc contributionseo th
voltage (and thus linear in time contributions to the phase)
This serves as a caricature of rf driven Josephson junctions
known to exhibit the famous Shapiro steps [27].

The setup is given by Fi§l 2 for a spi# = 1/2 particle

y§t now with an ac voltage applied across the junction. In the

-sections that follow, we will resume our central focus on the
constant voltage drop case(t) = wjt. Only in this short
section do we analyze an applied ac voltage bias.

The calculations for the ac voltage bias case parallel the
analysis of the previous sections. First, we express atiger
by pure harmonics. This is readily achieved by relying on the
identity

zC sin Mm

ZJ

with {.J,(C)} Bessel functions. The factgft, ') of Eq.[32)
and thereafter now becomes

ZJ

The analog of EJL.{86) for the ac voltage bias case is

(42)

A cos[Q(nt +mt)].  (43)

T 245
<Icl cl |Tl| Z EkE Z
2meL sin Q(n 4+ m)t (44)
(B + Ep)3
Further resonant (delta function) terms make an appearance
Form > 1.

Similarly, the analog of EQ.{67) reads

n(§)Im(5)A°
|111|2 Z EkEf)(Ek‘FE)

n,m,k,p
m)Qt — (Sy(t))wr, cos(n + m)§A)é,
m)Qt + (Sy(t))wr, cos(n +m)Qt)é,
+2m$Q(S,(0)) sin(n + m)Qté,].

<fl‘1u—cl>S - -

x[(2mQ{(S5 (1)) sin(n
+(2mQ(Sy(t)) sin(n +

To O(|T1]?), the nutations are given by

=T ZE >

n+m7$0
2mQ wr,
X 2
(Ek + Ep) Ep + Ep
" 1—cosQ(n+m)t

n+m

Py

(05 2

+ (5:(0)))

(45)

Thus far our discussion centered on a Josephson junctiddigher order effects further enhance this response[[Huj45

for a time independent potential differenic€dc voltage bias)
between the two superconducting leads for whi¢h) = w ;¢
withw; = 2¢eV.

the ac voltage bias analog of Hgl36) for the dc voltage bias
case. The seminal feature of our results is the existenace-of f
guencies in the spin dynamics of all integer multiples of the
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voltage bias driving ac frequendy. As the spin alters (via
back-action effects) the tunneling supercurrent, the e
rent will exhibit oscillations at all frequencies. = rQ2 with

r an integer. Extending the results bf [9] to this problem, the
supercurrent

(1) = sin (1) [2n%ep? ATy — 2T P)

TS|, (@6)

wherep is the spin density of states within the leads, with FIG. 4: A ferromagnetic slab inserted between two supergctitag

the spin given by EqEMBLK5) with the Larm@. (t))p = leads. The entire system is subjected to a weak external etiagn
(S.(0)). field B. A schematic of the precessing spins is shown.
VIll. FERROMAGNETSIN JOSEPHSON JUNCTIONS follows is a quick qualitative sketch by way of an analogy. An

exact solution will be detailed elsewhekel[29].

We now investigate what transpires when ferromagnets (in; Transforming from spin variables to bosonic operators
9 P 9 b(7)) at all lattice sites, [28]

stead of a single spin) are immersed between two s-wave su-

perconductors with a dc bias voltage applied across the junc ST() = bt (;)\/ﬁ’

tion (as illustrated in Figd4)). As in the single spin preil, 1

the full problem involves both the back-action of the spin on S™(7) = [b(F) — ==b (P)b(F)b(7)] V28,

the phase of the superconductors (ignored here) and the spin 258

dynamics sparked by the tunneling current (which we focus S. = =S + b1 (Mb(P). (48)

on below). Further, for extended junctions, phasons nliyura Sans the?
appear. In what follows, we assume that the phases of the tw;
superconductors surrounding a single magnetic slab have
spatially uniform phase differenggt). The tunneling action

(|71 |%) tunneling part of the action, the action is
adratic in the bosonic operators and is readily diagoedli
ifi ¢ space. We find that the free part of the action

amounts to a sum over individual tunneling actions through d%q
each of the individual spins labeled by their sites So = _/dt/ (2m)d {S[J(a) = J(0)] + R}
Sy b (@), (49)
4Z/dt/dt’ﬁR(t,t’)Tf§ W7o t) - S (F )it 1) with d the dimension of the inserted magnet. (As the problem
= ! is ferromagnetic,/(0) = ming{J(¢)}). Comparing this ac-

. . tion to the one appearing in the single spin problem, we find

+/dt/dt’TfﬁK (t, ") Squ (T t) - Squ (7, )5 (L, ). that to Gaussian order the spin-wave problem is identical to
the dynamics of a single spin with the replacement

For ferromagnetic spin chains/planes with arbitrary excfea

constants/ (7, 7'), and scaled external magnetic fieid the h = hess(q) = {S[J(q) — J(0)] + h}. (50)
exact equation of motion reads The quadratic contribution of th@(|T1|?) portion of the ac-
g tion involving non-local in time correlations has precistie
0=( a(7) L gd(F) T _;lfcl;r 4 I_(;'u.fcl;'r same form for both the single spin problem and for each mode

dt g of the spin-wave problem. Thus, the quadratit,i® (|7} |?)

+ 370 7)Su(, 1) x Sa(F,1))s.  (47)  corrections to the spin dynamics are given by EGHLT36,3) wi
> the replacement of EQ.{b0).
For instance, the above analogy suggests that that the net

Itis hard not to notice a resemblance between the singlgarromagnetic moment variation = 1/2 ferromagnets is
spin problem (Eq{d3)) and the problem of the ferromagnet

(Eq.(4T)). Indeed, as we will shortly demonstrate the spin oM

wave dynamics in the ferromagnet within a Josephson junc- 1%

tion bears much in common with the single spin problem with B 5 Alwp

the proviso that the various ferromagnetic spin waves feel =T *(1 = coswst)[D_ EvE,(Ey + E,)3

an effective momentum dependent magnetic field of strength k.p ? !

hess = h+ S[J(K) — J(0)] with .J (k) the Fourier transform M 3 A ] (51)
of the two spin interactiotf (7, 7). V& - EvEy(Er + Ep)?”

The solution proceeds much the same as for the single spin
problem. Henceforth, we discuss the qualitative physies exwith V' the volume of the magnet antl its magnetization
pected. Unlike the precise solutions presented till nonatwh sans the supercurrent. Alternatively, the analysis maglighr

10
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the derivation of the previous sections word for word whileintegrals to low orders was replaced by an “adiabatic” ap-
taking the unperturbed solution (the analogue of the Larmoproximation wherein the slow dynamics of the spin vis a

solution of Eq[[El1)) to be a spin wave and computing all cor-vis electronic processes was explicitly incorporaté!) ~

rections toO(T7). S(t) + (' — t)(dS/at).
In the continuum limit, (i) The (“classical”) largeS limit allowed us to omit many
, _Ps 2 instances oﬁqu in the equations of motion and onl§? re-
ey (@) = mo ¢ +h (52) lated contributions in the tunneling action were consetjaken

. . . Furth , as briefly alluded t lier, in this limite thv-
with my = S/v (wherew is the volume per site), the magne- urthermore, as briefly alludec to earller, In this limite

. , .
tization density of the ground state, andthe spin stiffness. erage of the vectorial pr9d/u¢$(t )#x 5()) is equal t(_) the
This i — hes(q) correspondence applies to any propertyProduct of the averagess(t')) x (S()). Correspondingly,
inherited by the single spin dynamics in the Josephson junc@"y €xpectation value braces may be omitted. Thus, we may
tion. In particular, in[[B] it was beautifully shown how spin "€Place any expectation valyel) by Aitself.
dynamics may alter the super-current in the Junction. The The advantgge of this method |s_that furmshes_ an elegant
current may be computed by the likes of EGI(27). Extendind"on'pertufbat've closed form solution for Fhe spin dynam-
these results to a ferromagnetinserted in a Josephsoiganct '°S- We will not repeat the results for the single spin cluste
by the correspondence of HGX50), we find that the new spir(15 > 1) problem here and rather refer the readet o [8]. We

wave dynamics leads to the supercurrent now briefly comment on applications of this method to other
systems.
) diq 5 o 5o 3,9 To O(|T1|?), the spin wave dynamics in ferromagnets may
(I(t)) = sin ¢(t) / 2n)1 [2” ep”A(|To|” ~ 1|T1| ) be attained via the substitution of HgX50). Equivalerttig

5 o spin wave equations of motion may also be determined di-
+4e|T1|p heff(cf)<5z(@)>], (53)  rectly when applying the adiabatic approximation on E.(47

. . . . We then find
with p the spin density of states within the leads. A match-

ing of the Josephson and spin frequencies (such as presenggcl(m
here for variations in the low temperature magnetic moment

+hox Sa() + > Jij S, 1) x SalFi,b)

(see EqddE.51))) leads to a DC signal; additional harmon- J
ics further appear. We emphasize that in the above we com- - dS.; .
pared only the Gaussian portion in the Bose fields. Higher +rSe X a sinw,t = 0(54)

order (non-Gaussian) terms originating from EQ.(48) ad wel

as phasons alter the natural correspondence diEq.(50)I A fyyith . = S, |A[2|Ty|? (Er+ E, — eV)~2 — (B + E, +
- P

discussion of these issues will be detailed elsewhele [29]. Exp

eV)~2]. The appropriate spin wave equation is

IX. OTHER GEOMETRIES % = i[h 4+ S{J(q) — J(0)}]b(])
If phason contributions are neglected, then by a trivial +rOb(G,t) sinwyt. (55)
change of geometry all of our results thus far, will apply?.he solution to EGTES) is

for other systems as well. For instance, by replacing one o

the superconducting leads by a surface, the resultingrayste : _

may emulate a superconducting tip coupled to superconduct-  b(¢,t) = b(q,0) exp[— 2i(5{7(@) J(Oz} + 1)

ing surface through a single spin or a ferromagnet. Here, all wyvl—r

of the results of SectiodsIM. V1) for the spin dynamics and x {tan~( K ) — tanfl(ﬁ - tan(wa/Q))}] (56)
tunneling current hold. V1= k2 V1— k2 ’

Similarly, by replacing both superconducting leads by sur- o ) )
faces and examining a magnetic layer inserted in betweevhichis quite different from the standard spin-wave evioht
the resultant system looks much alike a layered supercor @ magnet outside a Josephson junction. The key feature

ducting/magnetic system. In this system, the results ofS & nonuniform evolution of each spin-wave. Similar to the
Sectiorl[¥I) apply. azimuthal precession of a single spin, the planar compsnent

Sz, Precess as the real and imaginary parts@fio(t)] with
anonlinearp(t). Thermodynamic quantities computed via the
X. LARGE S ADIABATIC APPROXIMATIONS corrected bosonic spin-wave dispersion exhibit correstio
Similarly, we may examine the adiabatic lar§equations

Thus far we studied the dynamics of single spins and of fer®f motion for an antiferromagnetic spin chain oriented glon
romagnets. In[8], the largs limit of the single spin problem the z-axis in a Josephson junction (just as in Elg.(4) yet now
was studied. In that work, several approximations were madéVith @ single antiferromagnetic spin chain replacing tivedte

(i) The perturbative approach that we employed in the curnagnetic slab in ah = 0 background). We then find that that

rent article which allows an exact evaluation of all pentine the staggered spir; = (—1)i§i (with the integeri the spin

11
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site location along the chain) satisfies

de SQUID

0= D§cl(t) —+ 3at§cl (t) X 8z§cl (t) Magnetic atom

or cluster in
= . the weak link
+KOpSq(t) sinw st (57)

wherel] = % [97 — -, 97]. Here,g = 2/ and the spin wave
velocityv, = 2aJ.S, with a is the lattice constant. The role of
the supercurrent as an effective driving term is evidenhen t

last line of Eql(&N).

XI. CONCLUSIONS

In conclusion, our work addresses new dynamical effect§1G. 5: A SQUID-based detection scheme. The SQUID monitors
exhibited by spins in Josephson Junctions. En route, marijie magnetic field produced by the magnetic cluster in onéef t
features (general and specific) were found: Junctions.

(1) We derived theexactequation of motion for spin sys-
tems on Keldysh contours. position relative to the spin an@(t) is the magnetic moment

(2) TheS = 1/2 spin dynamics of a single spin in a Joseph-of the spin. A ferromagnetic cluster of spf = 100 gen-
son junction was investigated and a perturbative solutias@ w erates a detectable magnetic figl® ~ 10~!1° T at a dis-
given. Spin-1/2 Josephson nutations are predicted. tance of a micron away from the spin. For a SQUID loop of

(3) Spin dynamically triggered ac effects are predicted.  micron dimensions located at that position, the ensuing flux

(4) The spin wave dynamiosf a ferromagnet in between variation §® ~ 10~7®, (with &, = hc/e the flux quan-
two superconducting leadsgas investigated. We predict non- tum) are within reach of modern SQUIDs. In such a setup,
trivial spin wave dynamics as well as new manifestations ofwith 73 /7, ~ 0.1, the typical critical Josephson current is
this dynamics (most n_otablymthe_supercurrent). _Jéo) ~ 10 pA, |A] = 1 meV, andeV ~ 10-3|A[, we find

(5) Large S expressions were discussed for ferromagnetiGhat the relative correctionsS/S ~ 0.1. The spin compo-
Elc?r?s and antiferromagnetic spin chains in a Josephson ung . ts orthogonal td vary, to O(T?2), with Fourier compo-

: nents at frequencids;, + wy| (wr = gupB), leading to a

observable signal in the magnetic figkl+ 6B. For a field
B ~ 200 G,w, ~ 560 MHz, and a new side band will appear
at|wr, —wy|, whose magnitude may be tuned to 10-100 MHz.
This measurable frequency is easily distinguished from the
Larmor frequencyy..

The efficiency of this detection scheme may be enhanced by
A. Appendix A: Detection embedding the spin in one of the Josephson junction arms of
the SQUID itself. Such a setup is illustrated in Al§j. 5. The

The non-trivial spin-wave and associated supercurrent ifosephson junction harboring the spin is employed in both

Josephson junctions containing ferromagnets (se€fal) VII triggering the r_lutations anq, along with th_e secongl jumctio

may be seen more readily seen than those of single spins. Ti?& the SQUID, in the detection of the resulting nutations.

spin dynamics may be discerned by measuring the magneti-

zation of the ferromagnetic slab as a function of time (as sug

gested by Eq{31)) as well as by monitoring the supercurrent ) ) _

(given by EqI[BB)). Other techniques may involve standard B- Appendix B: Time Ordering Along the Keldysh Contour

measurements of microwave radiation from the junction (and

backaction effects). The magnitudes of these effects will b |n averaging within the path integral formalism, we imme-

studied elsewher&.[29]. diately attain time ordered averages. In interchangingthe
We now briefly review a detection scheme discussed irder of the spins (if necessary) in the vectorial product upon

[E],[8d] for the Josephson nutations for tise> 1 limit of  time ordering within the path integral’ P, formulation a

the general spin S results of Sectldd(VI1). This correspaads change of sign is incurref [31]. We now go over, in some de-

a single magnetic cluster. tail, ime ordering within the Keldysh framework. As the #m
As it moves, the spin cluster magnetic moment generates @rdering is performed along the Keldysh contour, we will de-

time-dependent magnetic field3 (r, t) = £2[37(7-m(t)) —  note it byTx as we have done in deriving the effective action

r2m(t)]/r°. This small field is superimposed against the con-of subsectioli{\/T).

stant external field backgrouno‘ﬁl. In the abovej is the Consider the third term in E@.{B3). Upon time ordering, we
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find that In Eqs.[GILGB), we vividly see that upon time ordering
= = B = = along the Keldysh contour, the non-vanishing spin crosd{pro
{Squ(t’) x Sa(t))s _1<TK [Squ(t') x Sa(t)]) ucts become simply related to the imaginary and real parts of
= <TK[§(§up(t') — Sioun(t)) (S(t') x 5(1)).
x (§UP(t) + gdown(t))]>- (58)
Due to the form of the Keldysh contour (see Hify.(1)), irrespe C. Appendic C: Evaluation of Integrals
tive of the values of and¢#, S, »(t) always appears before
Saown(t'). Similarly, fort > ', S,(t) appears aftes,, (') We are now ready for the evaluation of the various integrals
while S0, (t) appears beforé‘down( ’). With this informa- I that appear in E{B3) to ordé&X(T?).
tion at hand, Ecl{38) leads to We start withl,;,_.;. Inserting EqIB3) and EGIBO) into

<TK[§qu(t/) x Sa()]) Eq.[33) we find upon invoking the relatiaf{t) = w st

= —0(t — )[(S(1) x 5(1)) + (5(t) x 5] (59) Tobs

The expectation values on the right are the usual operator ex 9. N R & -
pectation values. Here, we disposed of the up/down indices AT ez/dtj(t’t )BT T)(Salt’) x Sa(t))s

once we took care of time ordering. The up/down labels tt
merely serve as mnemonics for this time ordering along the = —|T}|%¢. Z /dt 0t )coswy
Keldysh contour.
Similarly, we find that X mnwL(t —t")sin[(Ey + E,)(t —t")]. (64)
(T [Sa(t') x Sa(®)]) = _ .
1 . . . . Before evaluating Eq.(64) exactly, we illustrate what an-
SO =) ((S() x S(t) = S(t) x S(t))) swer is anticipated. The underlying observation of -
2
R ~ ~ ~ abatic approach is that, as a consequencepf; < Ej ,
+0(t =) ((S(t) x S(t") = S(t) x S(1)))]- €0)  the spin dynamics is far slower than that of electronic pro-
By the same token(Tx[S, g (1) x g t)]) = 0. cesses. Thus, in integrals involving both spin and eleatron
qu

As will become clear shortly, in the solution of EGS](33) to degrees of freedom, we may regard the /spln as nearly sta-
order O(T2), we will need the spin-spin expectation values tionary and approximaté(t') ~ S(t) + (t' — t)(dS/dt).
of the usual Larmor problem (i.e. a single spin in a magnetlcTh'S physically transparent approximation was invoked in

field sans any supercurrent). Here, [EJ Employing this approximation here we anticipate that
) (Iej—ct)s ~ Cyé,sinwpt whereC] is, up to trivial prefac-
Sz (t) = 5:(0) coswrt + Sy (0) sinwr t tors, given by[ dx [2?3%(z)]. Such an anticipation is not
Sy(t) = Sy(0) coswrt — S;(0) sinwrt, far off the mark.
S.(t) = S.(0), (61) Next, we exactly evaluate Ef.{64) by rewriting products of

trigonometric functions as sums and consequently empdoyin
with the external magnetic field oriented along the posifive iha identities

axis andv;, = |h| the Larmor frequency.

Next, we invoke this solution to compute the various expec- o0
tation values within the Larmor problem (i.e. to ord®(T?)). /0 dz cosax = mo(a),
We find that o0 1
(Gout') % Sa(®))s /0 dx sinax = wo(a) + o (65)
= 00~ i In{{S(1) x S(0)) In the integrals of interest; assumes the role ¢f' —¢). As
— 4! - .
= —i0(t = t){[{S= (1) (1 + coswr (t 2) the applied magnetic field and voltage are far lower than-elec
+(Sy(t)) sinwp (t' —t)]éq tronic energy scalesy;, ; < Ej, ,, we find that all resonances
+[(Sy(#))(1 4 coswr,(t' — 1)) signaled by the delta functions are physically unaccessitil
—(Su(t)) sinwr (' —t)]e, our expressions undergo further simplifications. Retajitire

+2(8.(8)) coswr (¥ — £)é. . (62) leading order terms i®(wy,, s/ (Ex + E,)) We arrive at

Similarly, for theS = 1/2 problem,
(Sa(t') x Su(t))s

= Re{(S(¥' t
e{(s ( ) ( )} Thus, the form anticipated by the adiabatic approximatson i

1
= 5 sin wr (t' —t)é.. (63)  correctifC, = —|T1[*Y, , %.

A wrLw.j
< cl— cl |T1 ezZEkE Ek—i—E ) SIHWJt. (66)
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Similarly, by inserting EqL.3L.62) into ER{33) and invok
ing Eqs [Bb), we find

= |A]?
<I u—cl)S = _|111|2
1 kz,z; EkEp(Ek + EP)Q

(t))wr, cosw st)é,
(t)
(0))wy sinw sté,]

(S(1))) cos 6(t)], (67)

X[((Sz(t))ws sinw st — (S,
+((Sy(t))wy sinwyt + (S,

+(S-

= Colws(S(t)) sin p(t) + wr (é- x

Ywr, cosw t)é,

2,2008 submitted to Physical Review B
with the constantC, = —|T1|22,€7p EkEp@,‘;EpP and

o(t) = w,t the superconducting phase difference across the
junction. The last line of E.(®7) has a very physically sug-
gestive meaning regarding spin contractions and an efecti
longitudinal magnetic field- items which we will expand on in
SectionVF). Our expressions (Egs][6®,67)) above aretexac
to lowest order iril; and the ratio§wy, ./ Ek p)-

Finally, the integra(fqu_qu> = 0 identically by virtue of a
vanishing(S,. (t') x Sy (t))s = 0.
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