
PHYSICAL REVIEW B 83, 144528 (2011)
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A possibility to describe magnetism in the iron pnictide parent compounds in terms of the two-dimensional
frustrated Heisenberg J1-J2 model has been actively discussed recently. However, recent neutron-scattering data
have shown that the pnictides have a relatively large spin-wave dispersion in the direction perpendicular to the
planes. This indicates that the third dimension is very important. Motivated by this observation we study the
J1-J2-Jc model that is the three-dimensional generalization of the J1-J2 Heisenberg model for S = 1/2 and
S = 1. Using self-consistent spin-wave theory we present a detailed description of the staggered magnetization
and magnetic excitations in the collinear state. We find that the introduction of the interlayer coupling Jc suppresses
the quantum fluctuations and strengthens the long-range ordering. In the J1-J2-Jc model, we find two qualitatively
distinct scenarios for how the collinear phase becomes unstable on increasing J1. Either the magnetization or one
of the spin-wave velocities vanishes. For S = 1/2 renormalization due to quantum fluctuations is significantly
stronger than for S = 1, in particular close to the quantum phase transition. Our findings for the J1-J2-Jc model
are of general theoretical interest; however, the results show that it is unlikely that the model is relevant to
undoped pnictides.
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I. INTRODUCTION

Over the past 2 decades, there has been considerable
interest in the two-dimensional (2D) S = 1/2 Heisenberg
antiferromagnet with frustrating interactions. One of the most
widely studied models is the square lattice J1-J2 model,
with both nearest-neighbor J1 and next-to-nearest-neighbor
J2 antiferromagnetic interactions. The Hamiltonian is

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj , (1)

where 〈i,j 〉 stands for summation over nearest neighbors
(NN) while 〈〈i,j 〉〉 stands for summation over next-to-nearest
neighbors (NNN). Betts and Oitmaa1 were the first to point out
that there is a finite long-range order in the two-dimensional
Heisenberg model at zero temperature. Early studies2 showed
that the ground state of the pure J1 model has Néel order
reduced by quantum fluctuations. The Néel order is destabi-
lized with increasing J2 and at some critical value of J2/J1

a phase transition to a quantum disordered phase occurs.
On the other hand, for large J2/J1 the system will order
in a stripelike fashion of alternating rows (or columns) of
spins up and down. The long-range magnetic order is reduced
by quantum fluctuations. As J2/J1 is reduced the collinear
phase will become unstable at some critical ratio. There is
substantial evidence; see Refs. 3–5 and references within,
that the ground state of the quantum disordered phase has
no long-range magnetic order and is dominated by short-range
singlet (dimer) formation for 0.4 < J2/J1 < 0.6 for S = 1/2.
The stability of such a configuration implies that the lattice
symmetry is spontaneously broken and the ground state is
fourfold degenerate.

Using series expansion and mean-field spin-wave theory
methods, Singh et al. studied the excitation spectra of
the square lattice J1-J2 Heisenberg antiferromagnet.6 They
showed the excitation spectra is gapless at only two symmetry

related points of the Brillouin zone (0,0) and (0,π ), whereas
the accidental degeneracies at (π,π ) and (π,0) are lifted by the
“order by disorder” effect,7 where the quantum fluctuations
select a collinear ground state. Furthermore, they found the
ratio of the spin-wave velocities along the x and y directions
depends sharply on the J2/J1 ratio.

In addition to being of general theoretical interest, the J1-J2

model is relevant to the real layered magnetic materials.8,9

However, the real materials are not strictly two dimensional
and contain a small interlayer coupling Jc. For example,
Rosner et al.9 found that Jc/J1 ≈ 0.07 for Li2VOSiO4,
which can be described by a square lattice J1-J2 model
with large J2.8,9 This provides motivation for studies of a
three-dimensional extension of the J1-J2 model. Such an
extension for S = 1/2 has been recently studied using coupled-
cluster and rotation-invariant Green’s function methods,10 a
version of effective field theory11 as well as different kinds of
spin-wave approaches.12,13 In particular these studies focused
on the influence of Jc on the existence of an intermediate
quantum disordered phase at J2/J1 ≈ 0.5. Schmalfuß et al.10

found that on increasing the interlayer coupling Jc > 0 the
intermediate phase disappears at Jc ≈ (0.4 − 0.6)J2. Our
interest in the 3D model is mainly motivated by the discovery
of superconductivity in the iron pnictides.14

Parent pnictides demonstrate alternating spin stripes and
therefore it is quite natural to assume that the collinear phase
of J1-J2 model describes the system. Since their discovery,
many investigations have been focused on understanding the
magnetic properties of the pnictide parent compounds.15–22

Magnetic long-range order has been established in LaOFeAs
and Sr(Ba,Ca)Fe2As2 using neutron scattering,23–27 muon
spin resonance (μSR),28 and Mössbauer spectroscopy.29,30

The neutron studies reveal the parent compounds display a
columnar antiferromagnetic ordering with a staggered mag-
netic moment of (0.3–0.4)μB in LaOFeAs and (0.8–1.01)μB

in Sr(Ba,Ca)Fe2As2. In this columnar arrangement, stripes of
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FIG. 1. (Color online) (a) Schematic diagram of the three-
dimensional spin ordering in the Fe pnictides. Here we show the
a-b plane for the considered model with nearest-neighbor coupling
J1 and next-to-nearest-neighbor coupling J2. The interplane coupling
Jc is directed into the page. In addition we show in (b) the real space
positions of the lattice points A, a, B, and b which make up the unit
cell.

parallel spin order along the b axis and antiferromagnetically
along the a and c axes27,31; see Fig. 1.

The spin-wave velocities along the a and c axes have
been measured in neutron-scattering studies of SrFe2As2

23

and BaFe2As2
25 with va ≈ 205 meV and vc ≈ 45 meV.

On lowering the temperature the parent pnictide compounds
undergo a structural lattice distortion from a tetragonal to
an orthorhombic structure. The orthorhombic distortion is
very small and is of order a fraction of 1%.32 The structural
transition happens at a temperature slightly higher or equal to
the magnetic ordering temperature. This coincidence naturally
suggests that the structural transition can be driven by the
spontaneous violation of the Z2 symmetry (nematic transition)
in the spin stripe phase.15,16 Note that this suggestion is based
purely on symmetry arguments and is valid for both the
“localized” and “itinerant” paradigm. Let us call this scenario
A. The structural transition can also be fully independent of
the spin structure (scenario B). Moreover, the transition can
drive the spin structure (scenario C). In the present work we
ignore the very small orthorhombic distortion and consider the
“isotropic” model, i.e., a tetragonal lattice. In relation to the
iron pnictides this approach makes sense in cases A and B,
and it is not justified in case C.

In the tetragonal phase, the Fe sites form square planar
arrays such that the sites of adjacent planes lie above each
other; see Fig. 1. Recently, there has been debate concerning
the spin-wave velocity along the b axis, i.e., along the spin
stripes.23,33 On the one hand, direct neutron-scattering data
from twinned samples23 indicate the value of vb is comparable
with va . On the other hand, analysis33 of the NMR relaxation
rate indicates an order of magnitude smaller value of vb, vb ∼
10–30 meV. The small value of vb implies that the system

is close to a quantum critical point. Therefore, we refer to
the small vb scenario as the critical scenario and the large vb

scenario as the noncritical scenario.
Band-structure calculations34,35 have shown that columnar

antiferromagnetic ordering is the most stable structure. On
the one hand, band-structure results indicate a local moment
of up to 2.3μB per Fe site.17,35,36 This value is too large
compared to experiment. This has led to the suggestion
that the ordered moment might be strongly renormalized by
magnetic fluctuations, as described by the frustrated 2D J1-J2

model.18,21,33,37 This suggestion implies the critical scenario
because of very strong quantum fluctuations. On the other
hand, there are studies suggesting that the smallness of the
staggered magnetic moment can be explained by electronic
effects such as hybridization and spin-orbit coupling.22,38

Motivated by what is currently known about the pnictides
the goal of the present work is threefold. First, we provide
a quantitative theory for the magnetic excitations based on a
minimal spin model, namely the J1-J2 Heisenberg model with
interlayer coupling Jc for S = 1/2 and S = 1. In particular,
we will show the interlayer exchange coupling suppresses
the quantum fluctuations, strengthens the staggered moment,
and hence dramatically increases the stability of the columnar
phase. Furthermore, it has been recently suggested that the
strong reduction of the magnetic moment as seen in 2D
is not possible in 3D39 because the 3D coupling cuts the
logarithmic divergence of quantum flucuations. In this paper
we will show that a considerable reduction of the staggered
moment is still possible for S = 1/2 for small values of Jc

while a significant renormalization for S = 1 is possible only
for extreme fine-tuning.

Second, we discuss the phase diagram and the existence
of a dimerized phase for the J1-J2-Jc Heisenberg model.
Indeed we find a dependence of the point where the staggered
magnetization vanishes as a function of interlayer coupling Jc.
In particular, two different instabilities of the columnar phase
appear: Either the long-range order or one of the spin-wave
velocities vanishes. Note that in three dimensions the vanishing
of one of the spin-wave velocities does not imply the vanishing
of the staggered magnetization. We will discuss these two
kinds of instabilities in a forthcoming publication in more
detail.40

Third, we make quantitative predictions of the dispersion
and spin-wave velocities parallel (va), perpendicular (vb), and
through (vc) the magnetic stripes; the ratio vb/va is a useful
way to determine the degree of magnetic frustration J1/J2. The
spin-wave spectra over the full Brillouin zone show dramatic
differences between a system deep in the columnar phase and
one close to a quantum critical point. This provides a robust
experimental way to distinguish the critical and noncritical
scenarios presented above. In addition, we will compare our
model with experimental evidence and discuss whether the
J1-J2-Jc is an appropriate model for describing magnetism in
the pnictide parent compounds.

II. MODEL AND METHODS

It is well known that the parent iron pnictides are not
simple Mott-Hubbard insulators but rather are bad metals
with a very small Fermi surface. On the one hand this
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supports an itinerant picture for the compounds while on
the other hand there are many experimental indications for
localized moments. On a pure theoretical level it is clear that
the Hubbard on-site repulsion is rather large and therefore
even an itinerant system must be close to the Mott-Hubbard
regime. Most likely the truth is somewhere in the middle
since there are localized and delocalized degrees of freedom,
and it is not clear yet how to combine these two descrip-
tions.

In the present work we disregard the itinerant degrees
of freedom and consider a model of well-localized spins
described by a Heisenberg Hamiltonian consisting of effective
in-plane nearest-neighbor J1, next-to-nearest-neighbor J2 and
interlayer Jc exchange interactions

H = J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj + Jc

∑
|i,j |

Si · Sj , (2)

where 〈i,j 〉 and 〈〈i,j 〉〉 correspond to summation over NN
and NNN pairs in the plane and |i,j | corresponds to nearest-
neighbor pairs between the planes (see Fig. 1).

Since we want to describe the observed spin-stripe phase
in the parent pnictides we are interested in the region of
parameters of the effective Heisenberg model that supports
the phase. It is well known that this phase is stable at
sufficiently large J2, J2 > 0.5J1. The particular values of
J1, J2, Jc can be determined from comparison with known
magnetic excitation spectra and we will discuss this issue
later in the paper. Note thatwe consider the “isotropic”
Heisenberg model, the value of J1 is the same in both

directions, along the spin stripes and perpendicular to the
stripes so we consider the entire stripe ordering to be purely
spontaneous.

We calculate the sublattice magnetization and magnetic
excitations using self-consistent spin-wave theory for S =
1/2 and S = 1. This method has already been shown
to work well for S = 1/2 and S = 1 in the columnar
phase for the two-dimensional case.6,18,41 We have used
the Dyson-Maleev42,43 as well as the Schwinger boson
representation,44 which on the level of self-consistent mean-
field theory yields the same results for T = 0. The bo-
son operators Ai , ai , Bj , bj on the respective sublat-
tices (see Fig. 1) are introduced in the usual way by
performing a Dyson-Maleev42 transformation of the spin
operators.

Sz
i = S − a

†
i ai

S
†
i = (2S − a

†
i ai)ai

S−
i = a

†
i

(3)
Sz

j = −S + b
†
j bj

S
†
j = −b

†
j (2S − b

†
j bj )

S−
j = −bj .

The definition of A and B is similar to a and b. Using (3)
the Hamiltonian (2) may be presented to quartic order in the
operators A, a, B, and b

H = HAa + HBb + HAb + HaB + Hab + HAB

HAa = −J1S
2 + J1

∑
〈i,j〉

[
S(A†

i Ai + a
†
j aj − Aiaj − A

†
i a

†
j ) + 1

2
(A†

i AiAiaj − 2A
†
i Aia

†
j aj + A

†
i a

†
j a

†
j aj )

]

HBb = −J1S
2 + J1

∑
〈i,j〉

[
S(B†

i Bi + b
†
j bj − Bibj − B

†
i b

†
j ) + 1

2
(B†

i BiBibj − 2B
†
i Bib

†
j bj + B

†
i b

†
j b

†
j bj )

]

HAb = J1S
2 − J1

∑
〈i,j〉

[
S(A†

i Ai + a
†
j aj − Aib

†
j − A

†
i bj ) + 1

2
(A†

i AiAibj − 2A
†
i Aib

†
j bj + A

†
i b

†
j b

†
j bj )

]

HaB = J1S
2 − J1

∑
〈i,j〉

[
S(a†

i ai + B
†
jBj − aiB

†
j − a

†
i Bj ) + 1

2
(a†

i aiaiBj − 2a
†
i aiB

†
jBj + a

†
i B

†
jB

†
jBj )

]

Hab = −J2S
2 + J2

∑
〈〈i,j〉〉

[
S(a†

i ai + b
†
j bj − aibj − a

†
i b

†
j ) + 1

2
(a†

i aiaibj − 2a
†
i aib

†
j bj + a

†
i b

†
j b

†
j bj )

]

− JcS
2 + Jc

∑
|i,j |

[
S(a†

i ai + b
†
j bj − aibj − a

†
i b

†
j ) + 1

2
(a†

i aiaibj − 2a
†
i aib

†
j bj + a

†
i b

†
j b

†
j bj )

]

HAB = −J2S
2 + J2

∑
〈〈i,j〉〉

[
S(A†

i Ai + B
†
jBj − AiBj − A

†
i B

†
j ) + 1

2
(A†

i AiAiBj − 2A
†
i AiB

†
jBj + A

†
i B

†
jB

†
jBj )

]

− JcS
2 + Jc

∑
|i,j |

[
S(A†

i Ai + B
†
jBj − AiBj − A

†
i B

†
j ) + 1

2
(A†

i AiAiBj − 2A
†
i AiB

†
jBj + A

†
i B

†
jB

†
jBj )

]
. (4)
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We perform the Hartree-Fock mean-field decoupling of quartic
terms using the following notations:

f − 1
2 = 〈A†

i Ai〉 = 〈a†
i ai〉 = 〈B†

jBj 〉 = 〈b†j bj 〉
F = 〈Aibj 〉 = 〈A†

i b
†
j 〉 = 〈aiBj 〉 = 〈a†

i B
†
j 〉

G = 〈A†
i aj 〉 = 〈Aia

†
j 〉 = 〈B†

i bj 〉 = 〈Bib
†
j 〉 (5)

g = 〈AiBj 〉 = 〈A†
i B

†
j 〉 = 〈aibj 〉 = 〈a†

i b
†
j 〉

h = 〈AiBj 〉 = 〈A†
i B

†
j 〉 = 〈aibj 〉 = 〈a†

i b
†
j 〉.

The difference between g and h in (5) is that g corresponds to
the expectation value of next-to-nearest-neighbor pairs in the
plane and h corresponds to nearest-neighbor pairs between the
planes (see Fig. 1). It is convenient to introduce parameters μ,
ν, η, and χ defined as

μS = S + 1
2 − f + G

νS = S + 1
2 − f + F

(6)
ηS = S + 1

2 − f + g

χS = S + 1
2 − f + h.

Values of the parameters obtained in the self-consistent
procedure described below are plotted Fig. 2. Af-
ter the Hartree-Fock decoupling the Hamiltonian (4) is
transformed to

H = α + H AF1 + H F + H AF2

α = −2J2S
2 − 2JcS

2

H AF1 = J1μS
∑
〈i,j〉

(A†
i Ai + a

†
j aj + B

†
i Bi + b

†
j bj

−Aiaj − A
†
i a

†
j − Bibj − B

†
i b

†
j )

HF = −J1νS
∑
〈i,j〉

(A†
i Ai + b

†
j bj + a

†
i ai + B

†
jBj

−Aib
†
j − A

†
i bj − aiB

†
j − a

†
i Bj ) (7)

H AF2 = −J2ηS
∑
〈〈i,j〉〉

(a†
i ai + b

†
j bj + A

†
i Ai + B

†
jBj

− aibj − a
†
i b

†
j − AiBj − A

†
i B

†
j )

+ JcχS
∑
|i,j |

(a†
i ai + b

†
j bj + A

†
i Ai + B

†
jBj − aibj

− a
†
i b

†
j − AiBj − A

†
i B

†
j ).

In the momentum representation the Hamiltonian reads

H = α + HF + H AF1 + H AF2

α = −2(2J2 + Jc)NS2

H AF1 = 4J1μS
∑

k∈MBZ

[(A†
kAk + a

†
kak + B

†
kBk + b

†
kbk)

−C−(Aka−k + A
†
ka

†
−k + Bkb−k + B

†
kb−k

†)]

HF = −4J1νS
∑

k∈MBZ

[(A†
kAk + a

†
kak + B

†
kBk + b

†
kbk)

−C+(Akb
†
k + A

†
kbk + (akB

†
k + a

†
kBk)]

 0
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FIG. 2. (Color online) Quantum correction parameters μ, ν, η,
and χ as a function of J1/J2. Calculations were performed by
numerical iteration for a range of y values for both S = 1/2 and
S = 1. Here we show the results for y = 0.01 (solid line) and 0.10
(dashed line).

H AF2 = 4S(2J2η + Jcχ )
∑

k∈MBZ

[(A†
kAk + a

†
kak

+B
†
kBk + b

†
kbk) − μk(AkB−k + A

†
kB

†
−k

+ akb−k + a
†
kb−k

†)]. (8)
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Because of four different sublattices the Fourier transform
is defined in the magnetic Brillouin zone (MBZ). This is the
Brillouin zone of one sublattice, say the sublattice a,

ai =
√

4

N

∑
k∈MBZ

e−ik·riak. (9)

In Eq. (8) HF and H AF1 consists of ferromagnetic and anti-
ferromagnetic intraplane terms for nearest-neighbor pairs (J1)
while H AF2 consists of antiferromagnetic intraplane next-to-
nearest-neighbor pairs (J2) and antiferromagnetic interplane
nearest-neighbor pairs (Jc). In addition, for simplicity we have
introduced the coefficients C+, C−, and μk as follows:

μk = J2η[cos(kx) + cos(ky)] + Jcχ cos(kz)

2J2η + Jcχ

C+ = cos[(kx + ky)/2] = cos(kb/
√

2)
(10)

C− = cos[(kx − ky/2] = cos(ka/
√

2)

Cz = cos(kz) = cos(kc).

The components kx and ky are directed along diagonals of the
base square; see Fig. 1. At this stage it is convenient to unfold
the magnetic Brillouin zone and to use the full Brillouin zone:

k = (ka,kb,kc)

−π � ka � π
(11)

−π � kb � π

−π � kc � π.

Therefore the momentum summation in all subsequent equa-
tions is defined as

∑
k

= N

2

∫ π

−π

dka

2π

∫ π

−π

dkb

2π

∫ π

−π

dkc

2π
. (12)

Since we are considering the four distinct sublattices A, a,
B, and b the full Brillouin zone over counts the number of
degrees of freedom. To compensate this we have introduced
an additional prefactor in the definition of summation (12).

In the symmetry broken phase the dispersion reads

ω(k) =
√

A2
k − B2

k . (13)

The coefficients Ak and Bk are easily obtained by diagonal-
izing the Hamiltonian (8) in the usual way via a Bogoliubov
transformation

Ak = 2J2S(λ + xνC+)
(14)

Bk = 2J2S(2ηC+C− + xμC− + yχCz),

where, for simplicity, we have introduced the frustration
parameters

x = J1/J2
(15)

y = Jc/J2

and have the numerical factor

λ = x(μ − ν) + 2η + yχ, (16)

which is expressed in terms of the quantum correction
parameters (6). The sublattice magnetization ms is defined
as ms = 〈Si

z〉 so

ms = S + 1

2
− 1

N

∑
k

Ak√
Ak

2 − Bk
2
. (17)

The quantum correction parameters were determined from the
self-consistent equations by numerical iteration; see Eqs. (5)
and (6):

f − 1

2
= 1

N

∑
k

Ak√
A2

k − Bk
2

F = 1

N

∑
k

BkC−√
Ak

2 − Bk
2

G = 1

N

∑
k

AkC+√
Ak

2 − Bk
2

(18)

g = 1

N

∑
k

Bkμk√
Ak

2 − Bk
2

h = 1

N

∑
k

BkCz√
Ak

2 − Bk
2
.

For 2J2 > J1 � Jc > 0, the classical ground state is the
stripe-ordered phase with ordering vector (π,0,π ). In addition
to breaking spin-rotational and time-reversal symmetries, the
lattice symmetry is spontaneously broken, the ordering vector
(0,π,π ) is equally possible. To be specific, we consider the
(π,0,π ) phase. The excitation spectrum is gapless at (0,0,0)
and (π,0,π ). These are the Goldstone modes with dispersion

ω(q) ≈
√

va
2qa

2 + vb
2qb

2 + vc
2qc

2, (19)

where q is measured relative to the ordering vector and va , vb,
vc are the spin-wave velocities along the crystal axes

va = 2J2S
√

(2η + xμ)(2η + xμ + yχ )

vb = 2J2S
√

(2η − xν)(2η + xμ + yχ ) (20)

vc = 2J2S
√

yχ (2η + xμ + yχ ).

The existence of this branch of magnetic excitations follows
from the Goldstone theorem. There exists also a second branch
of spin waves for ω(0,π,0) = ω(π,π,π ) and ω(0,π,π ) =
ω(π,π,0) which have not yet been observed experimentally.
Since they are gapped the intensity of scattered neutrons would
be substantially lower than the primary branch at (π,0,π ).
Their energies read

ω(0,π,0) = 4J2S
√

(2η − xν)(xμ − xν + yχ )
(21)

ω(0,π,π ) = 4J2S
√

(xμ − xν)(2η − xν + yχ ).

III. GENERAL RESULTS

The influence of the ratio of exchange parameters y =
Jc/J2 on the resulting staggered magnetization, spin-wave
velocities and excitation spectra is studied for a range of values
of y. The staggered magnetization was calculated by numerical
iteration for a range of y assuming y 	 1; the results are shown
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FIG. 3. (Color online) Staggered magnetization in the three-
dimensional magnetic Brillouin zone as a function of the ratio of
the exchange couplings J1 and J2. The calculated three-dimensional
staggered magnetizations were obtained using (a) linear spin-wave
theory and (b) self-consistent spin-wave theory. In each plot we show
results for S = 1/2 and S = 1 for y = 0.01 (solid line) and 0.10
(dashed line).

in Fig. 3. We show results for both linear spin-wave theory and
self-consistent spin-wave theory for S = 1/2 and S = 1.

We have also calculated the “critical” value of x = J1/J2

where either the staggered magnetization or one of the spin-
wave velocities vanishes both for S = 1/2 in Fig. 4 and for
S = 1 in Fig. 5. A detailed distinction between vanishing
staggered magnetization or vanishing spin-wave velocity will
be presented elsewhere.40 Basically, these figures show the
phase diagram of the model as it results from self-consistent
spin-wave theory. For S = 1/2, the regions above the lines
correspond to the columnar spin-stripe phase and the regions
below them correspond to the columnar spin-dimerized phase.
It is well known that the transition between these phases is
of first order. Therefore, strictly speaking, the criterion of a
vanishing magnetization is not quite the correct one to indicate
the transition, the true transition happens at a slightly smaller
value of J1/J2 than that indicated in Fig. 4. However, it is
known, see, e.g., Ref. 3, that the criterion gives practically the
correct value of the critical point for y = 0. Here we assume
that the same is true for small nonzero y.

In Fig. 3 we observe an interesting behavior of ms(x) as
a function of increasing interlayer coupling. In the vicinity
of x = 2 and for small values of y the renormalized mag-

0

0.05

0.1

0.15

0.2

0.25

1.8 1.85 1.9 1.95 2

y 
=

 J
c/

J 2

x = J1/J2

Columnar spin-stripe

Columnar spin-dimer

FIG. 4. (Color online) The phase diagram of the S = 1/2 3D J1-
J2-Jc Heisenberg model; y = Jc/J2 measures the interlayer coupling.
The region above the curve corresponds to the columnar spin-stripe
phase and the region below to possibly the columnar spin-dimerized
phase.

netization changes very rapidly on small parameter changes,
differing significantly from linear spin-wave theory calcula-
tions even for S = 1. This clearly indicates strong quantum
fluctuations. These fluctuations are stronger for S = 1/2; see,
for instance, the larger deviation of the region of instability
from the value x = 2 than for S = 1 (compare Figs. 4 and
5). This also implies that very small values of the staggered
magnetization can be obtained for S = 1/2 more easily, i.e.,
with less fine-tuning, than for S = 1. But qualitatively, the
curves for S = 1/2 and for S = 1 are very similar. For
all parameters, the long-range order is strengthened by the
coupling in the third dimension.

We would like to briefly comment on the intermediate
quantum phases for S = 1/2 and S = 1 near x = 2. There is
a consensus that in the S = 1/2 two-dimensional J1-J2 model
there is an intermediate magnetically disordered phase at
0.4J1 < J2 < 0.6J1. We believe that this is the columnar spin

0
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0.02

1.98 1.985 1.99 1.995 2

y 
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 J
c/
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x = J1/J2

Columnar spin-stripe

?

FIG. 5. (Color online) The phase diagram of the S = 1 3D J1-J2-
Jc Heisenberg model; y = Jc/J2 measures the interlayer coupling.
The region above the curve corresponds to the columnar spin-stripe
phase and the region below to possibly either a columnar spin-
dimerized phase like for S = 1/2 or a quadrupolar ordered phase.
Note the very different scales compared to Fig. 4.
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dimer phase. According to our data for the 3D model presented
in Fig. 4 the columnar spin dimer phase disappears around
Jc/J2 ≈ 0.25. The critical value of Jc for disappearance of the
magnetically disordered phase differs from that determined
previously10 by the couple-cluster method, J2/J1 ≈ 0.36. We
do not think that the difference in the value is significant;
both our method and the method of Ref. 10 are approximate.
More importantly, there is qualitative agreement about the
phase diagram. For S = 1 we also found a tiny region of
an intermediate nonmagnetic phase shown in Fig. 5. This
differs qualitatively from previous studies45 that were unable
to identify an intermediate phase. Note the very small scale
on which we find the instability of the columnar stripe order.
Unfortunately, within the present method we cannot determine
the exact nature of the phase and, therefore, in Fig. 5 the phase
is shown with a question mark.

The ratio of the spin-wave velocities along the different
directions is very sensitive to the value x = J1/J2. The point
is that in a real compound the staggered magnetization can
depend on a range of additional uncontrolled variables such as
itinerancy, hybridization, and so on. The dispersion relation,
however, depends only on the effective Hamiltonian and thus
is less ambiguous.18 Our results for the spin-wave velocities
along the three crystal axes are shown in Fig. 6 versus the
ratio J1/J2 for y = 0.01 and 0.10. The velocities are given in
units of J2; va and vb only weakly depend on y, while, on
the other hand, vc ∝ √

y. The dependence of the ratios of the
spin-wave velocities on the values of the exchange couplings is
stronger than the corresponding dependence of the staggered
magnetization. So it is more appropriate to determine the
values of the couplings from the spin-wave velocities.

Spin excitation spectra for S = 1 along high-symmetry
cuts through the Brillouin zone are shown in Fig. 7. We
show the excitation spectra for both a system deep in the
columnar phase (J1/J2 = 1) and one near the quantum phase
transition (J1/J2 = 1.98). In the present work we analyze
the dependence of the spin-wave dispersion on the interlayer
coupling Jc. The case of the small coupling, y = Jc/J2 	 1 is
of special interest. Expanding the spectrum as defined in (13)
in powers of y we find

ω2(k) = ω2
0(k) + y δω2(k), (22)

where

ω2
0(k) = 4J 2

2 S2[(x(μ − ν) + 2η + xνC+)2

− (2ηC+C− + xμC−)2] (23)

and

δω2(k) = 8J 2
2 S2χ [(x(μ − ν) + 2η + xνC+)

− (2ηC+C− + xμC−)Cz]. (24)

Note that all parameters in Eqs. (23) and (24) are calculated
at y = 0. Equation (23) is the dispersion in the 2D case;
it has Goldstone modes (ka,kb) = (0,0) and (ka,kb) = (π,0).
The expanded 3D dispersion (22) has the Goldstone modes
at (ka,kb,kc) = (0,0,0) and (ka,kb,kc) = (π,0,π ) as expected.
Note that ω(k) is generally a nonanalytic function of y at small
y while ω2(k) is the analytic one. This is why the expansion
(22) is written in terms of ω2. In the limit y → 0 the parameters
μ,ν,η,χ depend on x = J1/J2 only. The corresponding plots
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FIG. 6. (Color online) Spin-wave velocities along the crystal axes
as functions of the ratio J1/J2 for y = 0.01 (solid line) and 0.10
(dashed line). Results are presented for S = 1/2 and S = 1. Note that
the ordinate values are divided by

√
y for vc only.

are presented in Fig. 2. These plots together with Eq. (22)
allow one to determine the spin-wave dispersion at arbitrary
small y.

IV. APPLICATION TO IRON PNICTIDES

The smallness of the measured magnetic moment in the
iron pnictides relative to theoretical calculations is a matter
of controversy; there exist two different scenarios which offer
different explanations for the discrepancy between experiment
and theory. It has been suggested that magnetic fluctuations
may strongly reduce the local magnetic moment, with the ratio
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FIG. 7. (Color online) Spin excitation spectra along high-
symmetry cuts through the Brillouin zone for S = 1. We show the
excitation spectra for both a system deep in the columnar phase
(J1/J2 = 1) and one near the quantum phase transition (J1/J2 =
1.98). Calculations were performed using self-consistent spin-wave
theory and here we compare results for y = 0.01 (solid and dotted
lines) and 0.10 (dashed and dot-dashed lines).

x = J1/J2 being fixed to an appropriate value in the critical
scenario. The alternative derives its explanation from the role
of the local electronic orbitals and therefore the magnetic
couplings are not determined by the value of the magnetic
moment. Band-structure calculations have shown that J1 and
J2 are antiferromagnetic and very similar in value.17,35,36 In
Table I we compare the size of the experimentally measured
magnetic moment to that calculated by LDA methods. Typi-
cally the experimental values are at least twice smaller than the
LDA values. Due to strong quantum fluctuations in the model
in principle one can obtain the required suppression of the
staggered magnetization by two times by choosing x ≈ 1.99
for S = 1 [see Fig. 3(b)]. However, due to the large change in

TABLE I. Comparison of the magnetic moment in units of μB as
predicted from LDA calculations and those observed in experiment.

Material LDA moment46 (μB ) Expt. moment (μB )

LaOFeAs 1.69 0.3627

NdOFeAs 1.49 0.2547

CaFe2As2 1.51 0.8048

BaFe2As2 1.68 0.8731

SrFe2As2 1.69 1.0149

FIG. 8. (Color online) Spin-wave dispersion in the plane of the
spin stripes. The spin-wave dispersions ω(k) at ω(ka,kb,π ) in units
of J2 is shown for J1/J2 = 0.76 (top) and J1/J2 = 1.972 (bottom)
for y = 0.10. Values were obtained using self-consistent spin-wave
theory for S = 1.

ms on small parameter changes, it is clear from Fig. 3(b) that
considerable fine-tuning is required.

A more effective probe for the value of the ratio x = J1/J2

is considering the spin-wave velocities since they depend
on the Hamiltonian only. In the present work we compare
the J1-J2-Jc Heisenberg model to experimental evidence;
this is studied via the critical and noncritical scenarios. The
dispersion in the plane of the spin stripes ω(ka,kb,π ) is
shown in Fig. 8. For the critical scenario we adjusted the
ratio x = J1/J2 = 1.974 to fit the ratios vb/va and vc/va

obtained from the analysis33 of the NMR relaxation rate. For
the noncritical scenario we used the experimental ratios of
the spin-wave velocities vb/va ≈ 0.70 and vc/va ≈ 0.25 that
follow from inelastic neutron-scattering data.24 In this case
x = 0.76 gives the best fit. In addition we plot in Fig. 9 the
dispersion of spin waves in the plane along and through the spin
stripes ω(π,kb,kc). The dispersion ω(π,kb,kc) is helpful since
it shows the effect of the interlayer coupling and how extensive
the spin waves propagate along the c axes. In addition it is a
way to determine if strong quantum fluctuations persist in three
dimensions.

The plots in Figs. 8 and 9 provide a general qualitative
overview. A quantitative comparison between the critical and
noncritical scenarios and the inelastic neutron-scattering data
is depicted in Fig. 10. We compare the fitted dispersions for
the critical and noncritical scenarios. The noncritical scenario
agrees nicely with the experimental data, whereas the critcal
scenario does not describe the dispersion at higher energies
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FIG. 9. (Color online) Spin-wave dispersion in the plane along
and through the spin stripes. The spin-wave dispersions ω(k) at
ω(π,kb,kc) in units of J2 is shown for J1/J2 = 0.76 (top) and
J1/J2 = 1.972 (bottom) for y = 0.10. Values were obtained using
self-consistent spin-wave theory for S = 1.

due to problems with the reduced staggered moment and the
anisotropic spin-wave velocities. Therefore, it is quite clear
that the pnictides, if decribed by the J1-J2-Jc Heisenberg
model, are deep in the columnar phase with J1 = 0.76J2.

In addition to determining if the pnictides are in the critical
or noncritical regime we study whether the J1-J2-Jc Heisen-
berg model is an appropriate model for describing the undoped
pnictides. In the critical scenario, vb is small compared to va

implying a high density of magnetic excitations33 while in the
noncritical scenario vb is sizable compared to va implying a
low density of magnetic excitations. In Fig. 10 we observe that
while the noncritical scenario does reproduce the known spin-
wave velocities, the dispersion cannot be matched globally.
Significant differences persist at intermediate energies for
the (π,kb,π ) dispersion curve. Therefore, it is clear that the
J1-J2-Jc Heisenberg model is not consistent with the data by
Zhao et al..24 We stress that the data is not consistent with the
“isotropic” Heisenberg model considered in the present work
because of the minute orthorhombic distortion. On the other
hand, the data is consistent with the anisotropic Heisenberg
model; see discussion in Ref. 24. The anisotropic Heisenberg
model implies that there are additional degrees of freedom
(orbital?) and it is outside of the scope of the present work.

It has been recently suggested that the strong reduction
of the magnetic moment possible in two dimensions18 is
not possible for substantial three-dimensional coupling and/or
magnetic anisotropy because these additional couplings dra-
matically suppress the quantum corrections to the ordered
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FIG. 10. (Color online) Comparison of fitted dispersions for the
critical and noncritical scenarios with inelastic neutron-scattering
data. We see that the noncritical scenario agrees nicely with the
experimental data, whereas the critcal scenario does not describe
the disperison at higher energies due to problems with the reduced
staggered moment and the anisotropic spin-wave velocities.

moment.39 The logarithmic divergence of the quantum correc-
tions to the staggered magnetisation seen in the square lattice
J1-J2 model for x → xc is cut off by the addition of either an
anisotropy gap or a third dimension. In Fig. 3 we do indeed
see an enhancement of the staggered magnetization compared
to the two-dimensional case18 for increasing values of y for
S = 1/2 and S = 1.

Since the quantum fluctuations are more significant for S =
1/2 than for S = 1 their suppression by the three-dimensional
coupling is seen more distinctly in the S = 1/2 data than in the
S = 1 data. In particular, close to the critical values xc, where
the columnar striped phase becomes unstable due to quantum
fluctuations, the suppression for increasing three-dimensional
coupling y → 1 is most clearly seen, cf. Fig. 3, which is in
accordance with the findings by Smerald and Shannon.39 The
quantitative difference between the results for S = 1/2 and for
S = 1 is most strikingly seen in the difference of scales of the
Figs. 4 and 5.

V. CONCLUSIONS

We have provided a quantitative theory for the magnetic
excitations on a tetragonal lattice based on a minimal spin
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model, namely the J1-J2-Jc Heisenberg model. First, we
have shown that the columnar phase is stabilized by the
introduction of the interlayer coupling Jc. Such a three-
dimensional coupling dramatically strengthens the staggered
magnetization and suppresses the strong quantum fluctuations.
Since for the S = 1/2 case the staggered magnetization
is more strongly renormalized by the quantum fluctuations
than for S = 1 the effects of the suppression of the quan-
tum fluctuations are more clearly seen for S = 1/2 than
for S = 1. Yet both spin species behave qualitatively the
same.

In addition, we have also shown that the position of the
critical point depends on the value of of the relative interlayer
coupling y. Again, this dependence is more significant for
S = 1/2 than for S = 1 because the influence of quantum

fluctuations and thus also of their suppression is stronger for
smaller spin than for larger spin. As function of y we found
to distinct ways how the columnar phase becomes unstable.
Either the magnetization or one of the spin-wave velocities
vanishes.

Second, the strong reduction of the magnetic moment is
possible in three dimensions if one considers small values of
y. One has to approach xc very closely even for S = 1/2.
Third, we have shown that one can conveniently model ωk(y)
for small y analytically.

Finally, comparing the J1-J2-Jc Heisenberg model with
experimental data we found that such a model does not explain
the data.24 If reproduces the spin-wave velocities, it cannot
match the dispersion globally. It is clear that further work is
called for.
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