52 research outputs found

    Forbedring av avlsstammer for Atlantisk laks ved bruk av gener som koder for trypsin-like isozymer

    Get PDF
    Sluttrapport NFR/NFFR- nr. 1402 - 701.30

    The FTZ-F1 gene encodes two functionally distinct nuclear receptor isoforms in the ectoparasitic copepod salmon louse (Lepeophtheirus salmonis)

    Get PDF
    The salmon louse, Lepeophtheirus salmonis, is an ectoparasitic crustacean that annually inflicts substantial losses to the aquaculture industry in the northern hemisphere and poses a threat to the wild populations of salmonids. The salmon louse life cycle consists of eight developmental stages each separated by a molt. Fushi Tarazu Factor-1 (FTZ-F1) is an ecdysteroid-regulated gene that encodes a member of the NR5A family of nuclear receptors that is shown to play a crucial regulatory role in molting in insects and nematodes. Characterization of an FTZ-F1 orthologue in the salmon louse gave two isoforms named αFTZ-F1 and βFTZ-F1, which are identical except for the presence of a unique N-terminal domain (A/B domain). A comparison suggest conservation of the FTZ-F1 gene structure among ecdysozoans, with the exception of nematodes, to produce isoforms with unique N-terminal domains through alternative transcription start and splicing. The two isoforms of the salmon louse FTZ-F1 were expressed in different amounts in the same tissues and showed a distinct cyclical expression pattern through the molting cycle with βFTZ-F1 being the highest expressed isoform. While RNA interference knockdown of βFTZ-F1 in nauplius larvae and in pre-adult males lead to molting arrest, knockdown of βFTZ-F1 in pre-adult II female lice caused disruption of oocyte maturation at the vitellogenic stage. No apparent phenotype could be observed in αFTZ-F1 knockdown larvae, or in their development to adults, and no genes were found to be differentially expressed in the nauplii larvae following αFTZ-F1 knockdown. βFTZ-F1 knockdown in nauplii larvae caused both down and upregulation of genes associated with proteolysis and chitin binding and affected a large number of genes which are in normal salmon louse development expressed in a cyclical pattern. This is the first description of FTZ-F1 gene function in copepod crustaceans and provides a foundation to expand the understanding of the molecular mechanisms of molting in the salmon louse and other copepods.publishedVersio

    Effects of chitin synthesis inhibitor treatment on Lepeophtheirus salmonis (Copepoda, Caligidae) larvae

    Get PDF
    The salmon louse (Lepeophtheirus salmonis) is an ectoparasite infecting Atlantic salmon (Salmo salar), which causes substantial problems to the salmon aquaculture and threatens wild salmon. Chitin synthesis inhibitors (CSIs) are used to control L. salmonis in aquaculture. CSIs act by interfering with chitin formation and molting. In the present study, we investigated the action of four CSIs: diflubenzuron (DFB), hexaflumuron (HX), lufenuron (LF), and teflubenzuron (TFB) on larval molt. As the mode of action of CSIs remains unknown, we selected key enzymes in chitin metabolism and investigated if CSI treatment influenced the transcriptional level of these genes. All four CSIs interfered with the nauplius II molt to copepodids in a dose-dependent manner. The EC50 values were 93.2 nM for diflubenzuron, 1.2 nM for hexaflumuron, 22.4 nM for lufenuron, and 11.7 nM for teflubenzuron. Of the investigated genes, only the transcriptional level of L. salmonis chitin synthase 1 decreased significantly in hexaflumuron and diflubenzuron-treated larvae. All the tested CSIs affected the molt of nauplius II L. salmonis larvae but at different concentrations. The larvae were most sensitive to hexaflumuron and less sensitive to diflubenzuron. None of the CSIs applied had a strong impact on the transcriptional level of chitin synthesis or chitinases genes in L. salmonis. Further research is necessary to get more knowledge of the nature of the inhibition of CSI and may require methods such as studies of protein structure and enzymological studies.publishedVersio

    Chitin synthases are critical for reproduction, molting, and digestion in the salmon louse (Lepeophtheirus salmonis)

    Get PDF
    Chitin synthase (CHS) is a large transmembrane enzyme that polymerizes Uridine diphosphate N-acetylglucosamine into chitin. The genomes of insects often encode two chitin synthases, CHS1 and CHS2. Their functional roles have been investigated in several insects: CHS1 is mainly responsible for synthesizing chitin in the cuticle and CHS2 in the midgut. Lepeophtheirus salmonis is an ectoparasitic copepod on salmonid fish, which causes significant economic losses in aquaculture. In the present study, the tissue-specific localization, expression, and functional role of L. salmonis chitin synthases, LsCHS1 and LsCHS2, were investigated. The expressions of LsCHS1 and LsCHS2 were found in oocytes, ovaries, intestine, and integument. Wheat germ agglutinin (WGA) chitin staining signals were detected in ovaries, oocytes, intestine, cuticle, and intestine in adult female L. salmonis. The functional roles of the LsCHSs were investigated using RNA interference (RNAi) to silence the expression of LsCHS1 and LsCHS2. Knockdown of LsCHS1 in pre-adult I lice resulted in lethal phenotypes with cuticle deformation and deformation of ovaries and oocytes in adult lice. RNAi knockdown of LsCHS2 in adult female L. salmonis affected digestion, damaged the gut microvilli, reduced muscular tissues around the gut, and affected offspring. The results demonstrate that both LsCHS1 and LsCHS2 are important for the survival and reproduction in L. salmonis.publishedVersio

    Two apolipoproteins in salmon louse (Lepeophtheirus salmonis), apolipoprotein 1 knock down reduces reproductive capacity

    Get PDF
    The salmon louse, Lepeophtheirus salmonis is an ectoparasite of salmonid fish in the Northern Hemisphere, causing large economical losses in the aquaculture industry and represent a threat to wild populations of salmonids. Like other oviparous animals, it is likely that female lice use lipoproteins for lipid transport to maturing oocytes and other organs of the body. As an important component of lipoproteins, apolipoproteins play a vital role in the transport of lipids through biosynthesis of lipoproteins. Apolipoproteins have been studied in detail in different organisms, but no studies have been done in salmon lice. Two apolipoprotein encoding genes (LsLp1 and LsLp2) were identified in the salmon lice genome. Transcriptional analysis revealed both genes to be expressed at all stages from larvae to adult with some variation, LsLp1 generally higher than LsLp2 and both at their highest levels in adult stages of the louse. In adult female louse, the LsLp1 and LsLp2 transcripts were found in the sub-epidermal tissue and the intestine. RNA interference-mediated knockdown of LsLp1 and LsLp2 in female lice resulted in reduced expression of both transcripts. LsLp1 knockdown female lice produced significantly less offspring than control lice, while knockdown of LsLp2 in female lice caused no reduction in the number of offspring. These results suggest that LsLp1 has an important role in reproduction in female salmon lice.publishedVersio

    Entry into puberty is reflected in changes in hormone production but not in testicular receptor expression in Atlantic salmon (Salmo salar)

    Get PDF
    Background Puberty in male Atlantic salmon in aquaculture can start as early as after the first winter in seawater, stunts growth and entails welfare problems due to the maturation-associated loss of osmoregulation capacity in seawater. A better understanding of the regulation of puberty is the basis for developing improved cultivation approaches that avoid these problems. Our aim here was to identify morphological and molecular markers signaling the initiation of, and potential involvement in, testis maturation. Methods In the first experiment, we monitored for the first time in large Atlantic salmon males several reproductive parameters during 17 months including the first reproductive cycle. Since testicular growth accelerated after the Winter solstice, we focused in the second experiment on the 5 months following the winter solstice, exposing fish from February 1 onwards to the natural photoperiod (NL) or to continuous additional light (LL). Results In the first experiment, testis weight, plasma androgens and pituitary gonadotropin transcript levels increased with the appearance of type B spermatogonia in the testis, but testicular transcript levels for gonadotropin or androgen receptors did not change while being clearly detectable. In the second experiment, all males kept under NL had been recruited into puberty until June. However, recruitment into puberty was blocked in ~ 40% of the males exposed to LL. The first morphological sign of recruitment was an increased proliferation activity of single spermatogonia and Sertoli cells. Irrespective of the photoperiod, this early sign of testis maturation was accompanied by elevated pituitary gnrhr4 and fshb and testicular igf3 transcript levels as well as increased plasma androgen levels. The transition into puberty occurred again with stable testicular gonadotropin and androgen receptor transcript levels.publishedVersio

    Molecular characterisation of the salmon louse, Lepeophtheirus salmonis salmonis (Krøyer, 1837), ecdysone receptor with emphasis on functional studies of female reproduction

    Get PDF
    The salmon louse Lepeophtheirus salmonis (Copepoda, Caligidae) is an important parasite in the salmon farming industry in the Northern Hemisphere causing annual losses of hundreds of millions of dollars (US) worldwide. To facilitate development of a vaccine or other novel measures to gain control of the parasite, knowledge about molecular biological functions of L. salmonis is vital. In arthropods, a nuclear receptor complex consisting of the ecdysone receptor and the retinoid X receptor, ultraspiracle, are well known to be involved in a variety of both developmental and reproductive processes. To investigate the role of the ecdysone receptor in the salmon louse, we isolated and characterised cDNA with the 5′untranslated region of the predicted L. salmonis EcR (LsEcR). The LsEcR cDNA was 1608 bp encoding a 536 amino acid sequence that demonstrated high sequence similarities to other arthropod ecdysone receptors including Tribolium castaneum and Locusta migratoria. Moreover, in situ analysis of adult female lice revealed that the LsEcR transcript is localised in a wide variety of tissues such as ovaries, sub-cuticula and oocytes. Knock-down studies of LsEcR using RNA interference terminated egg production, indicating that the LsEcR plays important roles in reproduction and oocyte maturation. We believe this is the first report on the ecdysone receptor in the economically important parasite L. salmonis
    • …
    corecore