5,766 research outputs found

    Connecting substellar and stellar formation. The role of the host star's metallicity

    Get PDF
    Most of our current understanding of the planet formation mechanism is based on the planet metallicity correlation derived mostly from solar-type stars harbouring gas-giant planets. To achieve a far more reaching grasp on the substellar formation process we aim to analyse in terms of their metallicity a diverse sample of stars (in terms of mass and spectral type) covering the whole range of possible outcomes of the planet formation process (from planetesimals to brown dwarfs and low-mass binaries). Our methodology is based on the use of high-precision stellar parameters derived by our own group in previous works from high-resolution spectra by using the iron ionisation and equilibrium conditions. All values are derived in an homogeneous way, except for the M dwarfs where a methodology based on the use of pseudo equivalent widths of spectral features was used. Our results show that as the mass of the substellar companion increases the metallicity of the host star tendency is to lower values. The same trend is maintained when analysing stars with low-mass stellar companions and a tendency towards a wide range of host star's metallicity is found for systems with low mass planets. We also confirm that more massive planets tend to orbit around more massive stars. The core-accretion formation mechanism for planet formation achieves its maximum efficiency for planets with masses in the range 0.2 and 2 MJup_{\rm Jup}. Substellar objects with higher masses have higher probabilities of being formed as stars. Low-mass planets and planetesimals might be formed by core-accretion even around low-metallicity stars.Comment: Accepted by A&

    Tunnel spectroscopy in ac-driven quantum dot nanoresonators

    Full text link
    Electronic transport in a triple quantum dot shuttle device in the presence of an ac field is analyzed within a fully quantum mechanical framework. A generalized density matrix formalism is used to describe the time evolution for electronic state occupations in a dissipative phonon bath. In the presence of an ac gate voltage, the electronic states are dressed by photons and the interplay between photon and vibrational sidebands produces current characteristics that obey selection rules. Varying the ac parameters allows to tune the tunneling current features. In particular, we show that coherent destruction of tunneling can be achieved in our device

    Development and test of advanced composite components. Center Directors discretionary fund program

    Get PDF
    This report describes the design, analysis, fabrication, and test of a complex bathtub fitting. Graphite fibers in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications

    Tunneling spectroscopy of the superconducting state of URu2Si2

    Full text link
    We present measurements of the superconducting gap of URu2_2Si2_2 made with scanning tunneling microscopy (STM) using a superconducting tip of Al. We find tunneling conductance curves with a finite value at the Fermi level. The density of states is V shaped at low energies, and the quasiparticle peaks are located at values close to the expected superconducting gap from weak coupling BCS theory. Our results point to rather opened gap structures and gap nodes on the Fermi surface

    Radiative decay Z_H-> \gamma A_H in the little Higgs model with T-parity

    Full text link
    In the little Higgs model with T-parity (LHTM), the only tree-level kinematically allowed two-body decay of the Z_H boson is Z_H-> A_H H and thus one-loop induced two-body decays may have a significant rate. We study the Z_H-> \gamma A_H decay, which is induced at the one-loop level by a fermion triangle and is interesting as it depends on the mechanism of anomaly cancellation of the model. All the relevant two- and three-body decays of the Z_H gauge boson arising at the tree-level are also calculated. We consider a small region of the parameter space where the scale of the symmetry breaking f is still allowed to be as low as 500 GeV by electroweak precision data. We first analyze the scenario of a Higgs boson with a mass of 120 GeV. We found that the Z_H->\gamma A_H branching ratio can be of the order of a tree-level three-body decay and may be at the reach of detection at the LHC for f close to 500 GeV, but it may be difficult to detect for f=1 TeV. There is also an scenario where the Higgs boson has an intermediate mass such that the Z_H-> A_H H decay is closed, the Z_H-> \gamma A_H gets considerably enhanced and the chances of detection get a large boost.Comment: 19 pages, 9 figures, 2 table

    Tracking Advanced Planetary Systems (TAPAS) with HARPS-N. V.: A Massive Jupiter orbiting the very low metallicity giant star BD+03 2562 and a possible planet around HD~103485

    Get PDF
    We present two evolved stars from the TAPAS (Tracking Advanced PlAnetary Systems) with HARPS-N project devoted to RV precision measurements of identified candidates within the PennState - Torun Centre for Astronomy Planet Search. Evolved stars with planets are crucial to understand the dependency of the planet formation mechanism on the mass and metallicity of the parent star and to study star-planet interactions. The paper is based on precise radial velocity (RV) measurements, for HD 103485 we collected 57 epochs over 3317 days with the Hobby-Eberly Telescope and its High Resolution Spectrograph and 18 ultra-precise HARPS-N data over 919 days. For BD+03 2562 we collected 46 epochs of HET data over 3380 days and 19 epochs of HARPS-N data over 919 days. We present the analysis of the data and the search for correlations between the RV signal and stellar activity, stellar rotation and photometric variability. Based on the available data, we interpret the RV variations measured in both stars as Keplerian motion. Both stars have masses close to Solar (1.11 and 1.14), very low metallicities ([Fe/H]=-0.50 and -0.71), and, both have Jupiter planetary mass companions (m sin i=7 and 6.4 Mj), in close to terrestrial orbits (1.4 and 1.3~au), with moderate eccentricities (e=0.34 and 0.2). However, we cannot totally exclude that the signal in the case of HD~103485 is due to rotational modulation of active regions. Based on the current data, we conclude that BD+03 2562 has a bona fide planetary companion while for HD 103485 we cannot totally exclude that the best explanation for the RV signal modulations is not the existence of a planet but stellar activity. If, the interpretation remains that both stars have planetary companions they represent systems orbiting very evolved stars with very low metallicities, a challenge to the conditions required for the formation of massive giant gas planets.Comment: Acepted A&A 12 pages, 11 figure

    Dose Modeling Evaluations and Technical Support Document For the Authorized Limits Request for the DOE-Owned Property Outside the Limited Area, Paducah Gaseous Diffusion Plant Paducah, Kentucky

    Get PDF
    Environmental assessments and remediation activities are being conducted by the U.S. Department of Energy (DOE) at the Paducah Gaseous Diffusion Plant (PGDP), Paducah, Kentucky. The Oak Ridge Institute for Science and Education (ORISE), a DOE prime contractor, was contracted by the DOE Portsmouth/Paducah Project Office (DOE-PPPO) to conduct radiation dose modeling analyses and derive single radionuclide soil guidelines (soil guidelines) in support of the derivation of Authorized Limits (ALs) for 'DOE-Owned Property Outside the Limited Area' ('Property') at the PGDP. The ORISE evaluation specifically included the area identified by DOE restricted area postings (public use access restrictions) and areas licensed by DOE to the West Kentucky Wildlife Management Area (WKWMA). The licensed areas are available without restriction to the general public for a variety of (primarily) recreational uses. Relevant receptors impacting current and reasonably anticipated future use activities were evaluated. In support of soil guideline derivation, a Conceptual Site Model (CSM) was developed. The CSM listed radiation and contamination sources, release mechanisms, transport media, representative exposure pathways from residual radioactivity, and a total of three receptors (under present and future use scenarios). Plausible receptors included a Resident Farmer, Recreational User, and Wildlife Worker. single radionuclide soil guidelines (outputs specified by the software modeling code) were generated for three receptors and thirteen targeted radionuclides. These soil guidelines were based on satisfying the project dose constraints. For comparison, soil guidelines applicable to the basic radiation public dose limit of 100 mrem/yr were generated. Single radionuclide soil guidelines from the most limiting (restrictive) receptor based on a target dose constraint of 25 mrem/yr were then rounded and identified as the derived soil guidelines. An additional evaluation using the derived soil guidelines as inputs into the code was also performed to determine the maximum (peak) dose for all receptors. This report contains the technical basis in support of the DOE?s derivation of ALs for the 'Property.' A complete description of the methodology, including an assessment of the input parameters, model inputs, and results is provided in this report. This report also provides initial recommendations on applying the derived soil guidelines

    Quasienergy spectrum and tunneling current in ac-driven triple quantum dot shuttles

    Full text link
    The dynamics of electrons in ac driven double quantum dots have been extensively analyzed by means of Floquet theory. In these systems, coherent destruction of tunneling has been shown to occur for certain ac field parameters. In the present work we analyze, by means of Floquet theory, the electron dynamics of a triple quantum dot in series attached to electric contacts, where the central dot position oscillates. In particular, we analyze the quasienergy spectrum of this ac driven nanoelectromechanical system, as a function of the intensity and frequency of the ac field and of external dc voltages. For strong driving fields, we derive, by means of perturbation theory, analytical expressions for the quasienergies of the driven oscillator system. From this analysis we discuss the conditions for coherent destruction of tunneling (CDT) to occur as a function of detuning and field parameters. For zero detuning, and from the invariance of the Floquet Hamiltonian under a generalized parity transformation, we find analytical expressions describing the symmetry properties of the Fourier components of the Floquet states under such transformation. By using these expressions, we show that in the vicinity of the CDT condition, the quasienergy spectrum exhibits exact crossings which can be characterized by the parity properties of the corresponding eigenvectors

    Return to Sport and Athletic Function in an Active Population After Primary Arthroscopic Labral Reconstruction of the Hip

    Get PDF
    Background: Labral reconstruction has been advocated as an alternative to debridement for the treatment of irreparable labral tears, showing favorable short-term results. However, literature is scarce regarding outcomes and return to sport in the nonelite athletic population. Purpose: To report minimum 1-year clinical outcomes and the rate of return to sport in athletic patients who underwent primary hip arthroscopy with labral reconstruction in the setting of femoroacetabular impingement syndrome and irreparable labral tears. Study Design: Case series; Level of evidence, 4. Methods: Data were prospectively collected and retrospectively analyzed for patients who underwent an arthroscopic labral reconstruction between August 2012 and December 2017. Patients were included if they identified as an athlete (high school, college, recreational, or amateur); had follow-up on the following patient-reported outcomes (PROs): modified Harris Hip Score (mHHS), Nonarthritic Hip Score (NAHS), Hip Outcome Score–Sport Specific Subscale (HOS-SSS), and visual analog scale (VAS); and completed a return-to-sport survey at 1 year postoperatively. Patients were excluded if they underwent any previous ipsilateral hip surgery, had dysplasia, or had prior hip conditions. The proportions of patients who achieved the minimal clinically important difference (MCID) and patient acceptable symptomatic state (PASS) for mHHS and HOS-SSS were calculated. Statistical significance was set at P =.05. Results: There were 32 (14 females) athletes who underwent primary arthroscopic labral reconstruction during the study period. The mean age and body mass index of the group were 40.3 years (range, 15.5-58.7 years) and 27.9 kg/m2 (range, 19.6-40.1 kg/m2), respectively. The mean follow-up was 26.4 months (range, 12-64.2 months). All patients demonstrated significant improvement in mHHS, NAHS, HOS-SSS, and VAS (P \u3c.001) at latest follow-up. Additionally, 84.4% achieved MCID and 81.3% achieved PASS for mHHS, and 87.5% achieved MCID and 75% achieved PASS for HOS-SSS. VAS pain scores decreased from 4.4 to 1.8, and the satisfaction with surgery was 7.9 out of 10. The rate of return to sport was 78%. Conclusion: At minimum 1-year follow-up, primary arthroscopic labral reconstruction, in the setting of femoroacetabular impingement syndrome and irreparable labral tears, was associated with significant improvement in PROs in athletic populations. Return to sport within 1 year of surgery was 78%
    • …
    corecore