209 research outputs found

    Estimating magnetic filling factors from simultaneous spectroscopy and photometry : disentangling spots, plage, and network

    Get PDF
    A.C.C. acknowledges support from the Science and Technology Facilities Council (STFC) consolidated grant number ST/R000824/1.State-of-the-art radial velocity (RV) exoplanet searches are limited by the effects of stellar magnetic activity. Magnetically active spots, plage, and network regions each have different impacts on the observed spectral lines and therefore on the apparent stellar RV. Differentiating the relative coverage, or filling factors, of these active regions is thus necessary to differentiate between activity-driven RV signatures and Doppler shifts due to planetary orbits. In this work, we develop a technique to estimate feature-specific magnetic filling factors on stellar targets using only spectroscopic and photometric observations. We demonstrate linear and neural network implementations of our technique using observations from the solar telescope at HARPS-N, the HK Project at the Mt. Wilson Observatory, and the Total Irradiance Monitor onboard SORCE. We then compare the results of each technique to direct observations by the Solar Dynamics Observatory. Both implementations yield filling factor estimates that are highly correlated with the observed values. Modeling the solar RVs using these filling factors reproduces the expected contributions of the suppression of convective blueshift and rotational imbalance due to brightness inhomogeneities. Both implementations of this technique reduce the overall activity-driven rms RVs from 1.64 to 1.02 m s(-1), corresponding to a 1.28 m s(-1) reduction in the rms variation. The technique provides an additional 0.41 m s(-1) reduction in the rms variation compared to traditional activity indicators.PostprintPeer reviewe

    Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat 3 wild emmer wheat RIL population

    Get PDF
    Mineral nutrient malnutrition, and particularly deficiency in zinc and iron, afflicts over 3 billion people worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, genepool harbors a rich allelic repertoire for mineral nutrients in the grain. The genetic and physiological basis of grain protein, micronutrients (zinc, iron, copper and manganese) and macronutrients (calcium, magnesium, potassium, phosphorus and sulfur) concentration was studied in tetraploid wheat population of 152 recombinant inbred lines (RILs), derived from a cross between durum wheat (cv. Langdon) and wild emmer (accession G18-16). Wide genetic variation was found among the RILs for all grain minerals, with considerable transgressive effect. A total of 82 QTLs were mapped for 10 minerals with LOD score range of 3.2–16.7. Most QTLs were in favor of the wild allele (50 QTLs). Fourteen pairs of QTLs for the same trait were mapped to seemingly homoeologous positions, reflecting synteny between the A and B genomes. Significant positive correlation was found between grain protein concentration (GPC), Zn, Fe and Cu, which was supported by significant overlap between the respective QTLs, suggesting common physiological and/or genetic factors controlling the concentrations of these mineral nutrients. Few genomic regions (chromosomes 2A, 5A, 6B and 7A) were found to harbor clusters of QTLs for GPC and other nutrients. These identified QTLs may facilitate the use of wild alleles for improving grain nutritional quality of elite wheat cultivars, especially in terms of protein, Zn and Fe

    Detection Limits of Low-mass, Long-period Exoplanets Using Gaussian Processes Applied to HARPS-N Solar Radial Velocities

    Get PDF
    Radial velocity (RV) searches for Earth-mass exoplanets in the habitable zone around Sun-like stars are limited by the effects of stellar variability on the host star. In particular, suppression of convective blueshift and brightness inhomogeneities due to photospheric faculae/plage and starspots are the dominant contribution to the variability of such stellar RVs. Gaussian process (GP) regression is a powerful tool for statistically modeling these quasi-periodic variations. We investigate the limits of this technique using 800 days of RVs from the solar telescope on the High Accuracy Radial velocity Planet Searcher for the Northern hemisphere (HARPS-N) spectrograph. These data provide a well-sampled time series of stellar RV variations. Into this data set, we inject Keplerian signals with periods between 100 and 500 days and amplitudes between 0.6 and 2.4 m s1^{-1}. We use GP regression to fit the resulting RVs and determine the statistical significance of recovered periods and amplitudes. We then generate synthetic RVs with the same covariance properties as the solar data to determine a lower bound on the observational baseline necessary to detect low-mass planets in Venus-like orbits around a Sun-like star. Our simulations show that discovering planets with a larger mass (\sim 0.5 m s1^{-1}) using current-generation spectrographs and GP regression will require more than 12 yr of densely sampled RV observations. Furthermore, even with a perfect model of stellar variability, discovering a true exo-Venus (\sim 0.1 m s1^{-1}) with current instruments would take over 15 yr. Therefore, next-generation spectrographs and better models of stellar variability are required for detection of such planets

    Copper effect on the protein composition of photosystem II

    Get PDF
    The definitive version is available at: http://www.blackwell-synergy.com/doi/full/10.1111/j.1399-3054.2000.1100419.xWe provide data from in vitro experiments on the polypeptide composition, photosynthetic electron transport and oxygen evolution activity of intact photosystem II (PSII) preparations under Cu(II) toxicity conditions. Low Cu(II) concentrations (Cu(II) per PSII reaction centre unit≤230) that caused around 50% inhibition of variable chlorophyll a fluorescence and oxygen evolution activity did not affect the polypeptide composition of PSII. However, the extrinsic proteins of 33, 24 and 17 kDa of the oxygen-evolving complex of PSII were removed when samples were treated with 300 μM CuCl2 (Cu(II) per PSII reaction centre unit=1 400). The LHCII antenna complex and D1 protein of the reaction centre of PSII were not affected even at these Cu(II) concentrations. The results indicated that the initial inhibition of the PSII electron transport and oxygen-evolving activity induced by the presence of toxic Cu(II) concentrations occurred before the damage of the oxygen-evolving complex. Indeed, more than 50% inhibition could be achieved in conditions where its protein composition and integrity was apparently preserved.This work was supported by the Dirección General de Investigación Científica y Técnica (Grant PB98-1632).Peer reviewe

    Three years of HARPS-N high-resolution spectroscopy and precise radial velocity data for the Sun

    Get PDF
    Context. The solar telescope connected to HARPS-N has been observing the Sun since the summer of 2015. Such a high-cadence, long-baseline data set is crucial for understanding spurious radial-velocity signals induced by our Sun and by the instrument. On the instrumental side, this data set allowed us to detect sub- m s−1 systematics that needed to be corrected for. Aims. The goals of this manuscript are to (i) present a new data reduction software for HARPS-N, (ii) demonstrate the improvement brought by this new software during the first three years of the HARPS-N solar data set, and (iii) release all the obtained solar products, from extracted spectra to precise radial velocities. Methods. To correct for the instrumental systematics observed in the data reduced with the current version of the HARPS-N data reduction software (DRS version 3.7), we adapted the newly available ESPRESSO DRS (version 2.2.3) to HARPS-N and developed new optimised recipes for the spectrograph. We then compared the first three years of HARPS-N solar data reduced with the current and new DRS. Results. The most significant improvement brought by the new DRS is a strong decrease in the day-to-day radial-velocity scatter, from 1.27 to 1.07 m s−1; this is thanks to a more robust method to derive wavelength solutions, but also to the use of calibrations closer in time. The newly derived solar radial-velocities are also better correlated with the chromospheric activity level of the Sun in the long term, with a Pearson correlation coefficient of 0.93 compared to 0.77 before, which is expected from our understanding of stellar signals. Finally, we also discuss how HARPS-N spectral ghosts contaminate the measurement of the calcium activity index, and we present an efficient technique to derive an index free of instrumental systematics. Conclusions. This paper presents a new data reduction software for HARPS-N and demonstrates its improvements, mainly in terms of radial-velocity precision, when applied to the first three years of the HARPS-N solar data set. Those newly reduced solar data, representing an unprecedented time series of 34 550 high-resolution spectra and precise radial velocities, are released alongside this paper. Those data are crucial to understand stellar activity signals in solar-type stars further and develop the mitigating techniques that will allow us to detect other Earths.</jats:p

    Germline Variation Controls the Architecture of Somatic Alterations in Tumors

    Get PDF
    Studies have suggested that somatic events in tumors can depend on an individual's constitutional genotype. We used squamous cell carcinomas (SCC) of the skin, which arise in high multiplicity in organ transplant recipients, as a model to compare the pattern of somatic alterations within and across individuals. Specifically, we performed array comparative genomic hybridization on 104 tumors from 25 unrelated individuals who each had three or more independently arisen SCCs and compared the profiles occurring within patients to profiles of tumors across a larger set of 135 patients. In general, chromosomal aberrations in SCCs were more similar within than across individuals (two-sided exact-test p-value ), consistent with the notion that the genetic background was affecting the pattern of somatic changes. To further test this possibility, we performed allele-specific imbalance studies using microsatellite markers mapping to 14 frequently aberrant regions of multiple independent tumors from 65 patients. We identified nine loci which show evidence of preferential allelic imbalance. One of these loci, 8q24, corresponded to a region in which multiple single nucleotide polymorphisms have been associated with increased cancer risk in genome-wide association studies (GWAS). We tested three implicated variants and identified one, rs13281615, with evidence of allele-specific imbalance (p-value = 0.012). The finding of an independently identified cancer susceptibility allele with allele-specific imbalance in a genomic region affected by recurrent DNA copy number changes suggest that it may also harbor risk alleles for SCC. Together these data provide strong evidence that the genetic background is a key driver of somatic events in cancer, opening an opportunity to expand this approach to identify cancer risk alleles

    Tracking Membrane Protein Association in Model Membranes

    Get PDF
    Membrane proteins are essential in the exchange processes of cells. In spite of great breakthrough in soluble proteins studies, membrane proteins structures, functions and interactions are still a challenge because of the difficulties related to their hydrophobic properties. Most of the experiments are performed with detergent-solubilized membrane proteins. However widely used micellar systems are far from the biological two-dimensions membrane. The development of new biomimetic membrane systems is fundamental to tackle this issue

    Cure of Chronic Viral Infection and Virus-Induced Type 1 Diabetes by Neutralizing Antibodies

    Get PDF
    The use of neutralizing antibodies is one of the most successful methods to interfere with receptor–ligand interactions in vivo. In particular blockade of soluble inflammatory mediators or their corresponding cellular receptors was proven an effective way to regulate inflammation and/or prevent its negative consequences. However, one problem that comes along with an effective neutralization of inflammatory mediators is the general systemic immunomodulatory effect. It is, therefore, important to design a treatment regimen in a way to strike at the right place and at the right time in order to achieve maximal effects with minimal duration of immunosuppression or hyperactivation. In this review, we reflect on two examples of how short time administration of such neutralizing antibodies can block two distinct inflammatory consequences of viral infection. First, we review recent findings that blockade of IL-10/IL-10R interaction can resolve chronic viral infection and second, we reflect on how neutralization of the chemokine CXCL10 can abrogate virus-induced type 1 diabetes
    corecore