543 research outputs found

    Antipredator responses to overhead fright stimuli in hatchery-reared and wild European sea bass (Dicentrarchus labrax L.) juveniles.

    Get PDF
    In this study, shoals of hatchery-reared and wild sea bass juveniles (Dicentrarchus labrax L.) were tested for differences in their antipredator responses towards a visual (shadow) and a mechanical (dummy bill) overhead stimulus. Two behavioural variables – distance from the bottom and freezing duration – were measured during post-stimulus phases of each test and compared between wild and hatchery-reared shoals, composed of 10 juveniles each. The results showed that in both hatchery-reared and wild juveniles, stimulus exposure elicited a significant decrease in the mean shoal distance from the bottom. Similarly, individuals from both groups engaged a freezing reaction, but the mean freezing duration was significantly higher in wild- than in hatchery-reared juveniles. Results are discussed in the light of their relevance for the enhancement of restocking programmes

    Experiments and modeling of the growth of C. sorokiniana in lab batch and BIOCOIL photobioreactors for lipid production

    Get PDF
    A novel mathematical model for the quantitative assessment of the effect of dissolved nitrogen on the autotrophic batch-growth and lipid accumulation of C. sorokiniana, is proposed in this work. Model results have been validated through comparison with suitable experimental data performed in lab photobioreactors. Further experiments have been then performed using a BIOCOIL operated in fed-batch mode. The experimental results have been successfully predicted through the proposed model. Therefore, the model might represent a first step toward the development of a tool for the scale-up and optimization of the operating conditions of BIOCOIL photobioreactors. Furthermore, the fatty acid methyl esters obtained by transesterification of lipids extracted from C. sorokiniana, have been analysed in view of the assessment of their usability for producing biofuels. Subsequently, on the basis of the fatty acids profile, a wide range of biodiesel fuel properties have been predicted through suitable software

    Ulva as potential stimulant and attractant for a valuable sea urchin species: a chemosensory study

    Get PDF
    The green seaweed Ulva is close to becoming popular due to its suitability as potential feedstock production and for food items. However, there is a general lack of studies on the aversion or acceptability of this alga by marine organisms, particularly on its role as a chemoattractant and/or phagostimulant activity. Here we tested the effect of Ulva compressa and other biochemicals as potential chemostimulating compounds for a valuable sea urchin species, Paracentrotus lividus, selected as model species for our tests. Sea urchins’ chemical sensitivity was estimated by analysing movements of spines, pedicellariae, tube feet, and individual locomotion using an innovative bioassay. Our results showed that all forms of Ulva (fresh, defrosted, and fragmented) resulted in an effective stimulus, evoking in sea urchins strong responses with robust activation of spines and tube feet, where the defrosted one was the most stimulating. Among the amino acids tested, glycine, alanine, and glutamine produced a significant response, highlighting for the latter a concentration–response relationship. Sea urchins responded to glucose, not to fructose and sucrose. Spirulina resulted as the most effective stimulus, acting in a dose-dependent manner. Major results indicate the role of Ulva as a chemostimulant and strongly attractant for such herbivore species. From an applied point of view, the presence of potential Ulva’s feed-related compounds, acting as chemoattractants (to reduce food searching time) and/or feeding stimulants (to stimulate ingestion), would improve the several applications of Ulva in the formulation of the feeds for sustainable aquacultur

    Local structural studies of Ba1−x_{1-x}Kx_xFe2_2As2_2 using atomic pair distribution function analysis

    Full text link
    Systematic local structural studies of Ba1−x_{1-x}Kx_xFe2_2As2_2 system are undertaken at room temperature using atomic pair distribution function (PDF) analysis. The local structure of the Ba1−x_{1-x}Kx_xFe2_2As2_2 is found to be well described by the long-range structure extracted from the diffraction experiments, but with anisotropic atomic vibrations of the constituent atoms (U11U_{11} = U22≠U33U_{22} \ne U_{33}). The crystal unit cell parameters, the FeAs4_4 tetrahedral angle and the pnictogen height above the Fe-plane are seen to show systematic evolution with K doping, underlining the importance of the structural changes, in addition to the charge doping, in determining the properties of Ba1−x_{1-x}Kx_xFe2_2As2_2

    PD-L1/PD-1 axis in multiple myeloma microenvironment and a possible link with CD38-mediated immune-suppression

    Get PDF
    The emerging role of the PD-1/PD-L1 axis in MM immune-microenvironment has been highlighted by several studies. However, discordant data have been reported on PD-1/PD-L1 distribution within the bone marrow (BM) microenvironment of patients with monoclonal gammopathies. In addition, the efficacy of PD-1/PD-L1 blockade as a therapeutic strategy to reverse myeloma immune suppression and inhibit myeloma cell survival still remains unknown. Recent data suggest that, among the potential mechanisms behind the lack of responsiveness or resistance to anti-PD-L1/PD-1 antibodies, the CD38 metabolic pathways involving the immune-suppressive factor, adenosine, could play an important role. This review summarizes the available data on PD-1/PD-L1 expression in patients with MM, reporting the main mechanisms of regulation of PD-1/PD-L1 axis. The possible link between the CD38 and PD-1/PD-L1 pathways is also reported, highlighting the rationale for the potential use of a combined therapeutic approach with CD38 blocking agents and anti-PD-1/PD-L1 antibodies in order to improve their anti-tumoral effect in MM patients

    Comparing activity and space patterns of the European pond turtle, Emys orbicularis (L., 1758) in a Venice Lagoon wetland area: implications for conservation planning and management

    Get PDF
    Behavioural and spatial distribution analyses were quantified during a phase of activity and lethargy in a wild population of the European pond turtle inhabiting a protected internal wetland area of the Venice lagoon. The marked individuals (13 males and 16 females) provided informative radiotracking data to study differential patterns of activity, dispersion and habitat use between the two study periods ("October-November both 2019 and 2020" and "June-July 2020"). The differences in the movements behaviours and habitat selection were affected by period. Movements were higher in the period of activity than lethargy, but they were not influenced by sex and size. The presence of the European pond turtle in the transitional woodland/shrubs and brackish water valley habitats was significantly higher in the period of activity than lethargy. During the latter one, pond turtles were observed to brumate gregariously in a small area for brumation, usually in shallow water. In contrast, all individuals have changed water bodies during the activity period. Part of those movements has occurred towards aquatic habitat with higher salinities 1-17%o (mean: 10.64%o). These findings provide a set of information to better understand the behavioural ecology of Emys orbicularis in the lagoon area. This is of relevance for management actions and for the conservation of this threatened species

    Metabolomics and lipid profile analysis of Coccomyxa melkonianii SCCA 048

    Get PDF
    With an unsupervised GC–MS metabolomics approach, polar metabolite changes of the microalgae Coccomyxa melkonianii SCCA 048 grown under standard conditions for seven weeks were studied. C. melkonianii was sampled at the Rio Irvi River, in the mining site of Montevecchio-Ingurtosu (Sardinia, Italy), which is severely contaminated by heavy metals and shows high concentrations of sulfates. The partial-least-square (PLS) analysis of the GC–MS data indicated that growth of C. melkonianii was characterized by an increase of the levels of threonic acid, myo-inositol, malic acid, and fumaric acid. Furthermore, at the sixth week of exponential phase the lipid fingerprint of C. melkonianii was studied by LC-QTOF-MS. C. melkonianii lipid extract characterized through an iterative MS/MS analysis showed the following percent levels: 61.34 ± 0.60% for triacylglycerols (TAG); 11.55 ± 0.09% for diacylglyceryltrimethyl homoserines (DGTS), 11.34 ± 0.10% for sulfoquinovosyldiacylglycerols (SQDG) and, 5.29 ± 0.04% for lysodiacylglyceryltrimethyl homoserines (LDGTS). Noteworthy, we were able to annotate different fatty acid ester of hydroxyl fatty acid, such as FAHFA (18:1_20:3), FAHFA (18:2_20:4), FAHFA (18:0_20:2), and FAHFA (18:1_18:0), with relevant biological activity. These approaches can be useful to study the biochemistry of this extremophile algae in the view of its potential exploitation in the phycoremediation of polluted mining areas

    Positional errors in species distribution modelling are not overcome by the coarser grains of analysis

    Get PDF
    The performance of species distribution models (SDMs) is known to be affected by analysis grain and positional error of species occurrences. Coarsening of the analysis grain has been suggested to compensate for positional errors. Nevertheless, this way of dealing with positional errors has never been thoroughly tested. With increasing use of fine-scale environmental data in SDMs, it is important to test this assumption. Models using fine-scale environmental data are more likely to be negatively affected by positional error as the inaccurate occurrences might easier end up in unsuitable environment. This can result in inappropriate conservation actions. Here, we examined the trade-offs between positional error and analysis grain and provide recommendations for best practice. We generated narrow niche virtual species using environmental variables derived from LiDAR point clouds at 5 x 5 m fine-scale. We simulated the positional error in the range of 5 m to 99 m and evaluated the effects of several spatial grains in the range of 5 m to 500 m. In total, we assessed 49 combinations of positional accuracy and analysis grain. We used three modelling techniques (MaxEnt, BRT and GLM) and evaluated their discrimination ability, niche overlap with virtual species and change in realized niche. We found that model performance decreased with increasing positional error in species occurrences and coarsening of the analysis grain. Most importantly, we showed that coarsening the analysis grain to compensate for positional error did not improve model performance. Our results reject coarsening of the analysis grain as a solution to address the negative effects of positional error on model performance. We recommend fitting models with the finest possible analysis grain and as close to the response grain as possible even when available species occurrences suffer from positional errors. If there are significant positional errors in species occurrences, users are unlikely to benefit from making additional efforts to obtain higher resolution environmental data unless they also minimize the positional errors of species occurrences. Our findings are also applicable to coarse analysis grain, especially for fragmented habitats, and for species with narrow niche breadth

    Rendimento ovo-pup a em diferentes dietas larvais de Moscamed, C. capitata, linhagem TSL - Vienna 8.

    Get PDF
    Pequenas variaçÔes nos ingredientes da dieta larval podem resultar em grande diferença no rendimento de pupas na criação massal de C. capitata. Este trabalho objetivou testar diferentes formulaçÔes de dieta larval de moscamed para ser usada na biofåbrica moscamed Brasil
    • 

    corecore