1,558 research outputs found

    Quantum Monte Carlo Study of electrons in low dimensions

    Full text link
    We report on a diffusion Monte Carlo investigation of model electron systems in low dimensions, which should be relevant to the physics of systems obtainable nowadays in semiconductor heterostructures. In particular, we present results for a one dimensional electron gas, at selected values of the coupling strength and confinement parameter, briefly analyzing the pair correlations and relating them to predictions by Schulz for a Luttinger liquid with long-range interactions. We find no evidence of the the Bloch instability yielded by approximate treatments such as the STLS and DFT schemes.Comment: 6 pages, 3 figures. To appear in the proceedings of the 1999 International Conference on Strongly Coupled Coulomb Systems, Saint-Malo, Franc

    Current activities at IITRI on high- temperature protective coatings

    Get PDF
    Heat resistant protective coatings for use in liquid propellant rocket engine

    Spin and Charge Luttinger-Liquid Parameters of the One-Dimensional Electron Gas

    Full text link
    Low-energy properties of the homogeneous electron gas in one dimension are completely described by the group velocities of its charge (plasmon) and spin collective excitations. Because of the long range of the electron-electron interaction, the plasmon velocity is dominated by an electrostatic contribution and can be estimated accurately. In this Letter we report on Quantum Monte Carlo simulations which demonstrate that the spin velocity is substantially decreased by interactions in semiconductor quantum wire realizations of the one-dimensional electron liquid.Comment: 13 pages, figures include

    Jastrow correlation factor for atoms, molecules, and solids

    Get PDF
    A form of Jastrow factor is introduced for use in quantum Monte Carlo simulations of finite and periodic systems. Test data are presented for atoms, molecules, and solids, including both all-electron and pseudopotential atoms. We demonstrate that our Jastrow factor is able to retrieve a large fraction of the correlation energy

    Critical speed estimated by statistically appropriate fitting procedures.

    Get PDF
    Intensity domains are recommended when prescribing exercise. The distinction between heavy and severe domains is made by the critical speed (CS), therefore requiring a mathematically accurate estimation of CS. The different model variants (distance versus time, running speed versus time, time versus running speed, and distance versus running speed) are mathematically equivalent. Nevertheless, error minimization along the correct axis is important to estimate CS and the distance that can be run above CS (d'). We hypothesized that comparing statistically appropriate fitting procedures, which minimize the error along the axis corresponding to the properly identified dependent variable, should provide similar estimations of CS and d' but that different estimations should be obtained when comparing statistically appropriate and inappropriate fitting procedure. Sixteen male runners performed a maximal incremental aerobic test and four exhaustive runs at 90, 100, 110, and 120% of their peak speed on a treadmill. Several fitting procedures (a combination of a two-parameter model variant and regression analysis: weighted least square) were used to estimate CS and d'. Systematic biases (P < 0.001) were observed between each pair of fitting procedures for CS and d', even when comparing two statistically appropriate fitting procedures, though negligible, thus corroborating the hypothesis. The differences suggest that a statistically appropriate fitting procedure should be chosen beforehand by the researcher. This is also important for coaches that need to prescribe training sessions to their athletes based on exercise intensity, and their choice should be maintained over the running seasons

    Both a single sacral marker and the whole-body center of mass accurately estimate peak vertical ground reaction force in running.

    Get PDF
    While running, the human body absorbs repetitive shocks with every step. These shocks can be quantified by the peak vertical ground reaction force (F <sub>v,max</sub> ). To measure so, using a force plate is the gold standard method (GSM), but not always at hand. In this case, a motion capture system might be an alternative if it accurately estimates F <sub>v,max</sub> . The purpose of this study was to estimate F <sub>v,max</sub> based on motion capture data and validate the obtained estimates with force plate-based measures. One hundred and fifteen runners participated at this study and ran at 9, 11, and 13 km/h. Force data (1000 Hz) and whole-body kinematics (200 Hz) were acquired with an instrumented treadmill and an optoelectronic system, respectively. The vertical ground reaction force was reconstructed from either the whole-body center of mass (COM-M) or sacral marker (SACR-M) accelerations, calculated as the second derivative of their respective positions, and further low-pass filtered using several cutoff frequencies (2-20 Hz) and a fourth-order Butterworth filter. The most accurate estimations of F <sub>v,max</sub> were obtained using 5 and 4 Hz cutoff frequencies for the filtering of COM and sacral marker accelerations, respectively. GSM, COM-M, and SACR-M were not significantly different at 11 km/h but were at 9 and 13 km/h. The comparison between GSM and COM-M or SACR-M for each speed depicted root mean square error (RMSE) smaller or equal to 0.17BW (≤6.5 %) and no systematic bias at 11 km/h but small systematic biases at 9 and 13 km/h (≤0.09 BW). COM-M gave systematic biases three times smaller than SACR-M and two times smaller RMSE. The findings of this study support the use of either COM-M or SACR-M using data filtered at 5 and 4 Hz, respectively, to estimate F <sub>v,max</sub> during level treadmill runs at endurance speeds

    A Single Sacral-Mounted Inertial Measurement Unit to Estimate Peak Vertical Ground Reaction Force, Contact Time, and Flight Time in Running.

    Get PDF
    Peak vertical ground reaction force (Fz,max), contact time (tc), and flight time (tf) are key variables of running biomechanics. The gold standard method (GSM) to measure these variables is a force plate. However, a force plate is not always at hand and not very portable overground. In such situation, the vertical acceleration signal recorded by an inertial measurement unit (IMU) might be used to estimate Fz,max, tc, and tf. Hence, the first purpose of this study was to propose a method that used data recorded by a single sacral-mounted IMU (IMU method: IMUM) to estimate Fz,max. The second aim of this study was to estimate tc and tf using the same IMU data. The vertical acceleration threshold of an already existing IMUM was modified to detect foot-strike and toe-off events instead of effective foot-strike and toe-off events. Thus, tc and tf estimations were obtained instead of effective contact and flight time estimations. One hundred runners ran at 9, 11, and 13 km/h. IMU data (208 Hz) and force data (200 Hz) were acquired by a sacral-mounted IMU and an instrumented treadmill, respectively. The errors obtained when comparing Fz,max, tc, and tf estimated using the IMUM to Fz,max, tc, and tf measured using the GSM were comparable to the errors obtained using previously published methods. In fact, a root mean square error (RMSE) of 0.15 BW (6%) was obtained for Fz,max while a RMSE of 20 ms was reported for both tc and tf (8% and 18%, respectively). Moreover, even though small systematic biases of 0.07 BW for Fz,max and 13 ms for tc and tf were reported, the RMSEs were smaller than the smallest real differences [Fz,max: 0.28 BW (11%), tc: 32.0 ms (13%), and tf: 32.0 ms (30%)], indicating no clinically important difference between the GSM and IMUM. Therefore, these results support the use of the IMUM to estimate Fz,max, tc, and tf for level treadmill runs at low running speeds, especially because an IMU has the advantage to be low-cost and portable and therefore seems very practical for coaches and healthcare professionals

    The Determinants of the Preferred Walking Speed in Individuals with Obesity.

    Get PDF
    The preferred walking speed (PWS), also known as the "spontaneous" or "self-selected" walking speed, is the speed normally used during daily living activities and may represent an appropriate exercise intensity for weight reduction programs aiming to enhance a more negative energy balance. The aim of this study was to examine, simultaneously, the energetics, mechanics, and perceived exertion determinants of PWS in individuals with obesity. Twenty-three adults with obesity (age 32.7 ± 6.8 years, body mass index 33.6 ± 2.6 kg/m2) were recruited. The participants performed 10 min of treadmill familiarization, and PWS was determined. Each subject performed six 5-min walking trials (PWS 0.56, 0.83, 1.11, 1.39, and 1.67 m/s). Gas exchanges were collected and analyzed to obtain the gross energy cost of walking (GCw), rated perceived exertion (RPE) was measured using a 6-20 Borg scale, and the external mechanical work (Wext) and the fraction of mechanical energy recovered by the pendular mechanism (Recovery) were computed using an instrumented treadmill. Second-order least-squares regression was used to calculate the optimal walking speed (OWS) of each variable. No significant difference was found between PWS (1.28 ± 0.13 m/s) and OWS for GCw (1.28 ± 0.10 m/s), RPE cost of walking (1.38 ± 0.14 m/s), and Recovery (1.48 ± 0.27 m/s; p > 0.06 for all), but the PWS was significantly faster than the OWS for Wext (0.98 ± 0.56 m/s; p < 0.02). Multiple regression (r = 0.72; p = 0.003) showed that ∼52% of the variance in PWS was explained by Recovery, Wext, and height. The main finding of this study was that obese adults may select their PWS in function of several competing demands, since this speed simultaneously minimizes pendular energy transduction, energy cost, and perceived exertion during walking. Moreover, recovery of mechanical work, external work, and height seem to be the major determinants of PWS in these individuals

    Time course of muscle activation, energetics and mechanics of running in minimalist and traditional cushioned shoes during level running.

    Get PDF
    The study aimed to compare the ankle muscles activation, biomechanics and energetics of running in male runners during submaximal level run using minimalist (MinRS) and traditional cushioned (TrdRS) running shoes. During 45-min running in MinRS and TrdRS, the ankle muscles pre- and co-activation, biomechanics, and energetics of running of 16 male endurance runners (25.5 ± 3.5 yr) were assessed using surface electromyography (tibialis anterior and gastrocnemius lateralis), instrumented treadmill and indirect calorimetry, respectively. The net energy cost of running (C <sub>r</sub> ) was similar for both conditions (P = 0.25) with a significant increase over time (P < 0.0001). Step frequency (P < 0.001), and total mechanical work (P = 0.001) were significantly higher in MinRS than in TrdRS with no evolution over time (P = 0.28 and P = 0.85, respectively). The ankle muscles pre- and co-activation during the contact phase did not differ between the two shoe conditions (P ≥ 0.33) or over time (P ≥ 0.15). In conclusion, during 45-min running, Cr and muscle pre- and co-activation were not significantly different between MinRS and TrdRS with significantly higher step frequency and total mechanical work noted in the former than in the latter. Moreover, C <sub>r</sub> significantly increased during the 45-min trial in both shoe conditions along with no significant change over time in muscle activation and biomechanical variables

    Fat oxidation, hormonal and plasma metabolite kinetics during a submaximal incremental test in lean and obese adults

    Get PDF
    This study aimed to compare fat oxidation, hormonal and plasma metabolite kinetics during exercise in lean (L) and obese (O) men. Sixteen L and 16 O men [Body Mass Index (BMI): 22.9 ± 0.3 and 39.0 ± 1.4 kg · m(-2)] performed a submaximal incremental test (Incr) on a cycle-ergometer. Fat oxidation rates (FORs) were determined using indirect calorimetry. A sinusoidal model, including 3 independent variables (dilatation, symmetry, translation), was used to describe fat oxidation kinetics and determine the intensity (Fat(max)) eliciting maximal fat oxidation. Blood samples were drawn for the hormonal and plasma metabolite determination at each step of Incr. FORs (mg · FFM(-1) · min(-1)) were significantly higher from 20 to 30% of peak oxygen uptake (VO2peak) in O than in L and from 65 to 85% VO2peak in L than in O (p ≤ 0.05). FORs were similar in O and in L from 35 to 60% VO2peak. Fat max was 17% significantly lower in O than in L (p<0.01). Fat oxidation kinetics were characterized by similar translation, significantly lower dilatation and left-shift symmetry in O compared with L (p<0.05). During whole exercise, a blunted lipolysis was found in O [lower glycerol/fat mass (FM) in O than in L (p ≤ 0.001)], likely associated with higher insulin concentrations in O than in L (p<0.01). Non-esterified fatty acids (NEFA) were significantly higher in O compared with L (p<0.05). Despite the blunted lipolysis, O presented higher NEFA availability, likely due to larger amounts of FM. Therefore, a lower Fat(max), a left-shifted and less dilated curve and a lower reliance on fat oxidation at high exercise intensities suggest that the difference in the fat oxidation kinetics is likely linked to impaired muscular capacity to oxidize NEFA in O. These results may have important implications for the appropriate exercise intensity prescription in training programs designed to optimize fat oxidation in O
    corecore