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Abstract: Peak vertical ground reaction force (Fz,max), contact time (tc), and flight time (t f ) are key
variables of running biomechanics. The gold standard method (GSM) to measure these variables
is a force plate. However, a force plate is not always at hand and not very portable overground.
In such situation, the vertical acceleration signal recorded by an inertial measurement unit (IMU)
might be used to estimate Fz,max, tc, and t f . Hence, the first purpose of this study was to propose a
method that used data recorded by a single sacral-mounted IMU (IMU method: IMUM) to estimate
Fz,max. The second aim of this study was to estimate tc and t f using the same IMU data. The vertical
acceleration threshold of an already existing IMUM was modified to detect foot-strike and toe-off
events instead of effective foot-strike and toe-off events. Thus, tc and t f estimations were obtained
instead of effective contact and flight time estimations. One hundred runners ran at 9, 11, and
13 km/h. IMU data (208 Hz) and force data (200 Hz) were acquired by a sacral-mounted IMU and an
instrumented treadmill, respectively. The errors obtained when comparing Fz,max, tc, and t f estimated
using the IMUM to Fz,max, tc, and t f measured using the GSM were comparable to the errors obtained
using previously published methods. In fact, a root mean square error (RMSE) of 0.15 BW (6%) was
obtained for Fz,max while a RMSE of 20 ms was reported for both tc and t f (8% and 18%, respectively).
Moreover, even though small systematic biases of 0.07 BW for Fz,max and 13 ms for tc and t f were
reported, the RMSEs were smaller than the smallest real differences [Fz,max: 0.28 BW (11%), tc: 32.0 ms
(13%), and t f : 32.0 ms (30%)], indicating no clinically important difference between the GSM and
IMUM. Therefore, these results support the use of the IMUM to estimate Fz,max, tc, and t f for level
treadmill runs at low running speeds, especially because an IMU has the advantage to be low-cost
and portable and therefore seems very practical for coaches and healthcare professionals.

Keywords: gait analysis; biomechanics; sensor; accelerometer

1. Introduction

Running is defined as a cyclic alternance of support and flight phases, where at
most one limb is in contact with the ground. Indeed, Novacheck [1] postulated that the
presence of this flight phase (t f ) marks the distinction between walking and running
gaits. In other words, the duty factor, i.e., the ratio of ground contact time (tc) over stride
duration, should be under 50% to observe a running gait [2,3]. Though running provides
many health benefits, it is also associated with lower limb injuries [4,5], with a yearly
incidence of running related injuries of up to 85% across novice to competitive runners [6,7].
Several biomechanical variables such as the peak vertical ground reaction force (Fz,max,
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i.e., the maximum of the vertical ground reaction force during stance) and tc were used
to identify runners at risk of developing a running related injury [8–13]. In fact, Fz,max is
representative of the magnitude of external bone loading during the stance running phase
while tc measures the time during which this force is applied [14]. Therefore, Fv,max, tc, and
t f are key variables of running biomechanics.

A force plate is the gold standard method (GSM) to measure Fz,max, tc, and t f . However,
a force plate could not always be available and used [15,16]. In such a case, alternatives
would be to use a motion capture system [17,18] or a light-based optical technology [19].
Nevertheless, even though these three systems can be used outside the laboratory [20–22],
they suffer from a lack of portability and are restricted to a specific and small capture
volume. To overcome such limitation, techniques were developed to estimate Fz,max, tc,
and t f using portable tools such as inertial measurement units (IMUs), which are low-cost
and practical to use in a coaching environment [23].

Fz,max was previously estimated using the vertical acceleration signal recorded by a
sacral-mounted IMU [24,25]. For instance, a root mean square error (RMSE) of 0.15 BW
was reported when using a machine learning algorithm that used data filtered using a
10 Hz 8th order low-pass Butterworth filter [25]. Another method calculated the center of
mass and sacral marker vertical accelerations from their corresponding three-dimensional
(3D) kinematic trajectories, and reported an RMSE ≤ 0.17 BW when estimating Fz,max from
these acceleration signals [26]. The whole-body center of mass acceleration calculated from
the kinematic trajectories was also used by Pavei, et al. [27] to estimate Fz,max, but for a
single participant, and by Verheul, et al. [28] to estimate the resultant ground reaction
force impact peak (within the first 30% of the stance). Pavei, Seminati, Storniolo and
Peyré-Tartaruga [27] reported an RMSE of ~0.15 BW for running speeds ranging from
7 to 20 km/h, while an error of ~0.20 BW was reported by Verheul, Gregson, Lisboa,
Vanrenterghem and Robinson [28] for speeds between 7 and 18 km/h.

tc and t f are calculated from foot-strike (FS) and toe-off (TO) events, which can them-
selves be identified using different available techniques that used IMU data [24,25,29–39].
When using a sacral-mounted IMU, which is a natural choice as it approximates the location
of the center of mass [40], either the forward [31] or the vertical acceleration [24,25] were
used to estimate tc and t f . On the one hand, Lee, Mellifont and Burkett [31] detected
specific spikes in their unfiltered forward acceleration signals sampled at 100 Hz to identify
FS and TO events. On the other hand, the vertical ground reaction force was estimated from
the vertical acceleration signal recorded by the IMU (using Newton’s second law), which
allowed detecting FS and TO events using a 0 N threshold [24,25]. A 5 Hz low-pass But-
terworth filter (8th order) was shown to result in the best correlation between tc, obtained
from GSM and IMU data (sampled at 500 Hz) [24], while a machine learning algorithm
that used data filtered using a 10 Hz 8th order low-pass Butterworth filter, resulted in an
RMSE of 11 ms for tc [25]. The vertical acceleration (sampled at 208 Hz) was also used to
estimate the effective contact and flight times [39], two variables that allow deciphering
the landing-take-off asymmetry of running [41–43]. The authors estimated these effective
timings by using a body weight threshold instead of a 0 N threshold, which allowed de-
tecting effective FS and TO events and thus estimating effective contact and flight times.
Moreover, the vertical acceleration was filtered using a Fourier series truncated to 5 Hz
instead of the usual low-pass Butterworth filter. The authors reported an RMSE ≤ 22 ms
for both effective contact and flight times.

As previously stated, more research investigating the effect of different filtering meth-
ods are needed when estimating biomechanical variables such as Fz,max and tc [24], espe-
cially because the low-pass cutoff frequency could affect the estimation of biomechanical
variables [44,45]. For this reason, the first purpose of this study was to estimate Fz,max
using a Fourier series truncated to 5 Hz to filter the acceleration signal recorded by a sacral-
mounted IMU (IMU method: IMUM). The second aim of this study was to estimate tc and
t f using the same filtered acceleration signal. We previously used this filter to estimate
both effective contact and flight times [39], but this filter has never been used, to the best of
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the authors knowledge, to estimate Fz,max, tc, and t f . In the present study, tc and t f were
estimated from FS and TO events, themselves detected by modifying the body weight
threshold we previously used [39]. We hypothesized that (i) an RMSE smaller than or equal
to the 0.15 BW reported in Alcantara, Day, Hahn and Grabowski [25] should be obtained for
Fz,max, even if the IMUM is a simple method which does not rely on machine learning, as
was the 3D kinematic method [26], and (ii) tc and t f should have an RMSE smaller than or
equal to that we previously reported for effective contact and flight times (i.e., 0.22 ms) [39].

2. Materials and Methods
2.1. Participant Characteristics

One hundred recreational runners, which consisted of 27 females (age: 29 ± 7 years,
height: 169 ± 5 cm, body mass: 61 ± 6 kg, and weekly running distance: 22 ± 16 km) and
73 males (age: 30 ± 8 years, height: 180 ± 6 cm, body mass: 71 ± 7 kg, and weekly running
distance: 38 ± 24 km), were randomly selected from an existing database consisting
of 115 participants [26] for the purpose of the present study. Participants voluntarily
participated in this study, and to be included, they were required to run at least once a
week and to not have current or recent lower-extremity injury (≤1 month). The study
protocol was conducted according to the guidelines of the latest declaration of Helsinki and
approved by the local Ethics Committee of the Vaud canton (CER-VD 2020-00334). Written
informed consent was obtained for all subjects involved in the study.

2.2. Experimental Procedure and Data Collection

The experimental procedure and data collection has already been described else-
where [39]. Briefly, an IMU of 9.4 g (Movesense sensor, Suunto, Vantaa, Finland) was
firmly attached to the sacrum of participants using an elastic strap belt (Movesense, Suunto,
Vantaa, Finland; see first figure in [39]). Then, after a warm-up run of 7-min, performed
between 9 and 13 km/h on an instrumented treadmill (Arsalis T150–FMT-MED, Louvain-
la-Neuve, Belgium), three 1-min running trials using speeds of 9, 11, and 13 km/h were
recorded in a randomized order. Three-dimensional IMU and kinetic data corresponding
to the first 10 strides following the 30-s mark of the running trials were kept for data analy-
sis. Kinetic and IMU data were not exactly synchronized. However, the synchronization
delay between kinetic and IMU data was small (≤50 ms). Therefore, kinetic and IMU data
corresponded to the same 10 strides.

IMU data (saturation range: ±8 g) were collected at 208 Hz (manufacturing specifi-
cation) using a home-made iOS application running on an iPhone SE (Apple, Cupertino,
CA, USA). The IMU orientation was such that its medio-lateral (pointing towards the right
side of the IMU), posterior–anterior, and inferior–superior axes were denoted as the x-,
y-, and z-axis, respectively. These IMU data were transferred to a personal computer for
post processing.

The force plate embedded into the treadmill together with the Vicon Nexus software
(v2.9.3, Vicon, Oxford, UK) were used to collect kinetic data (200 Hz). In the laboratory
coordinate system (LCS), medio-lateral (pointing towards the right side of the body),
posterior–anterior, and inferior–superior axes were denoted as the x-, y-, and z-axis, respec-
tively. The Visual3D Professional software (v6.01.12, C-Motion Inc., Germantown, MD,
USA) was used to process the 3D ground reaction forces (analog signal), which were first
exported in .c3d format. Then, the forces were low-pass filtered at 20 Hz using a 4th order
Butterworth filter.

2.3. Gold Standard Method

For each running trial, FS and TO events were identified within Visual3D. These events
were detected by applying a 20 N threshold to the vertical ground reaction force [46]. tc
and t f were defined by the time between FS and TO events and between TO and FS events,
respectively, while Fz,max was defined by the maximum of the vertical ground reaction
force between FS and TO events and was expressed in body weights.
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2.4. Inertial Measurement Unit Method

The custom c++ code [47] used to process IMU data has already been described
elsewhere [39]. Briefly, the average angle between the z-axis of the IMU and LCS was
calculated using the median values of the 3D raw acceleration data filtered using a truncated
Fourier series to 0.5 Hz in each dimension. This angle was used to align (reorient) the
z-axis of the IMU with the LCS. This reorientation process was not considered in previous
research that used a sacral-mounted IMU to estimate Fz,max and tc [24,25,31]. Then, 3D
reoriented data were filtered using a truncated Fourier series to 5 Hz in each dimension. The
vertical ground reaction force was approximated by the filtered vertical acceleration signal
multiplied by body mass. FS and TO events were detected using a 20 N threshold, which
allowed to estimate tc and t f . This 20 N threshold replaced the body weight threshold used
in the original custom code described in [39] and is the only change made herein. Fz,max
was estimated as the maximum of the approximated vertical ground reaction force between
FS and TO events.

2.5. Data Analysis

The RMSE, both in absolute (ms and BW) and relative units, i.e., normalized by
the corresponding mean value over all participants and obtained using the GSM, was
calculated for Fz,max, tc, and t f averaged over the 10 analyzed strides for each participant
and each running trial. Data analysis was performed using Python (v3.7.4, available at
http://www.python.org (accessed on 25 October 2021)).

2.6. Statistical Analysis

All data are presented as mean ± standard deviation. To examine the presence of
systematic bias on Fz,max, tc, and t f obtained from the GSM and IMUM for each speed,
Bland–Altman plots were constructed [48,49]. In case of a systematic bias, a positive
value indicates an overestimation of the IMUM compared to the GSM, while a negative
value indicates an underestimation. In addition, lower and upper limit of agreements
and 95% confidence intervals were calculated. The limits of agreements were calculated
as the bias ± the smallest real difference (SRD). SRD defines the smallest change that
indicates a clinically important difference and is calculated as SRD = 1.96 σ, where σ is the
standard deviation of the difference between the gold standard and estimated values [50,51].
Besides, a significant slope of the regression line indicates the presence of a proportional
bias (heteroscedasticity). Then, as no obvious deviations from homoscedasticity and
normality were observed in the residual plots, two-way [method of calculation (GSM vs.
IMUM) × running speed (9 vs. 11 vs. 13)] repeated measures ANOVA using Mauchly’s
correction for sphericity were performed for Fz,max, tc, and t f . Holm corrections were
employed for pairwise post hoc comparisons. The differences between the GSM and IMUM
were quantified using Cohen’s d effect size, where |d| values close to 0.01, 0.2, 0.5, and
0.8 reflect a very small, small, moderate, and large effect size, respectively [52]. Statistical
analysis was performed using Jamovi (v1.2, https://www.jamovi.org (accessed on 25
October 2021)) with a level of significance set at p ≤ 0.05.

3. Results

The raw forward acceleration recorded by the IMU and the filtered vertical acceleration
recorded by the IMU, as well as the vertical acceleration recorded by the force plate during
a running stride for three representative participants running at 11 km/h, are depicted in
Figure 1.

Systematic biases (average over running speeds) were obtained for Fz,max (0.07 BW)
and tc and t f (13 ms), and 11 km/h gave the smallest absolute bias, followed by 9 km/h
and 13 km/h (Table 1). The three variables reported a significant negative proportional
bias at all speeds and the proportional bias of t f was larger than that of tc (Table 1).

http://www.python.org
https://www.jamovi.org
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Figure 1. Raw forward acceleration from inertial measurement unit (IMU), filtered vertical acceler-
ation from IMU, and vertical acceleration from force plate during a running stride for three repre-
sentative participants at 11 km/h are reported in (A–C). The vertical lines represent foot-strike and 
toe-off events as determined using a 20 N threshold on force plate data. 

Figure 1. Raw forward acceleration from inertial measurement unit (IMU), filtered vertical ac-
celeration from IMU, and vertical acceleration from force plate during a running stride for three
representative participants at 11 km/h are reported in (A–C). The vertical lines represent foot-strike
and toe-off events as determined using a 20 N threshold on force plate data.
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Table 1. Systematic bias, lower limit of agreement (Lloa), upper limit of agreement (Uloa), and
proportional bias ± residual random error together with its corresponding p-value between peak
vertical ground reaction force (Fz,max), contact time (tc), and flight time (t f ) obtained using inertial
measurement unit method and gold standard method at three running speeds. Confidence intervals
of 95% are given in square brackets [lower, upper]. Significant (p ≤ 0.05) proportional biases are
reported in bold font.

Speed (km/h) Systematic Bias Lloa Uloa Proportional Bias (p)

Fz,max (BW) 9 0.05 [0.04, 0.05] −0.21 [−0.22, −0.20] 0.30 [0.29, 0.31] −0.28 ± 0.02 (<0.001)
11 −0.04 [−0.04, −0.03] −0.31 [−0.32, −0.30] 0.23 [0.22, 0.24] −0.41 ± 0.02 (<0.001)
13 −0.13 [−0.13, −0.12] −0.45 [−0.46, −0.43] 0.19 [0.18, 0.20] −0.51 ± 0.02 (<0.001)

tc (ms) 9 −9.9 [−10.6, −9.1] −43.7 [−45.0, −42.4] 23.9 [22.6, 25.2] −0.38 ± 0.02 (<0.001)
11 7.3 [6.5, 8.0] −24.6 [−25.8, −23.4] 39.1 [37.9, 40.3] −0.37 ± 0.02 (<0.001)
13 20.2 [19.5, 20.9] −10.1 [−11.3, −9.0] 50.6 [49.4, 51.7] −0.29 ± 0.02 (<0.001)

t f (ms) 9 9.9 [9.1, 10.7] −23.8 [−25.0, −22.5] 43.5 [42.3, 44.8] −0.79 ± 0.02 (<0.001)
11 −7.4 [−8.1, −6.6] −39.2 [−40.5, −38.0] 24.5 [23.3, 25.8] −0.86 ± 0.02 (<0.001)
13 −20.4 [−21.1, −19.7] −50.8 [−52.0, −49.7] 10.0 [8.9, 11.2] −0.91 ± 0.02 (<0.001)

Note: For systematic biases, positive and negative values indicate the inertial measurement unit method overesti-
mated and underestimated Fz,max, tc, and t f , respectively.

Repeated measures ANOVA depicted significant effects for both methods and running
speed, as well as an interaction effect for Fz,max, tc, and t f (p ≤ 0.002; Table 2). Holm post
hoc tests yielded significant differences between Fz,max, tc, and t f obtained using the GSM
and IMUM at all speeds (p ≤ 0.006). The average RMSE over running speed was 0.15 BW
for Fz,max (6%), while it was 20 ms for tc and t f , corresponding to 8% and 18%, respectively
(Table 2). Cohen’s d effect sizes were small for Fz,max and moderate for tc and t f , except at
13 km/h which was large for the three variables (Table 2). The average SRD over running
speed was 0.28 BW for Fz,max (11%), while it was 32.0 ms for tc and t f , corresponding to
13% and 30%, respectively (Table 2).

Table 2. Peak vertical ground reaction force (Fz,max), contact time (tc), and flight time (
(

t f

)
) obtained

using the gold standard method (GSM) and inertial measurement unit method (IMUM) together with
the root mean square error [RMSE; both in absolute (ms or BW) and relative (%) units], as well as
Cohen’s d effect size and smallest real difference (SRD) for three running speeds. Significant (p ≤ 0.05)
method of calculation, running speed, and interaction effect, as determined by repeated measures
ANOVA, are reported in bold font. * Significant difference between Fz,max, tc, and t f obtained using
the GSM and IMUM at a given running speed, as determined by Holm post hoc tests.

Speed (km/h) Parameter Fz,max (BW) tc (ms) tf (ms)

GSM 2.37 ± 0.19 * 278.3 ± 22.2 * 92.8 ± 22.4 *
9 IMUM 2.42 ± 0.14 268.4 ± 15.5 102.7 ± 10.8

RMSE (absolute) 0.13 18.5 18.6
RMSE (%) 5.3 6.7 20.1

d −0.27 0.49 −0.54
SRD 0.26 (11%) 33.8 (12%) 33.7 (36%)

GSM 2.51 ± 0.19 * 249.7 ± 19.2 * 111.5 ± 19.7 *
11 IMUM 2.47 ± 0.13 256.9 ± 13.9 104.1 ± 9.1

RMSE (absolute) 0.13 16.4 16.5
RMSE (%) 5.1 6.6 14.8

d 0.22 −0.41 0.45
SRD 0.27 (11%) 31.8 (13%) 31.9 (29%)
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Table 2. Cont.

Speed (km/h) Parameter Fz,max (BW) tc (ms) tf (ms)

GSM 2.62 ± 0.20 * 227.6 ± 16.5 * 122.8 ± 17.5 *
13 IMUM 2.49 ± 0.11 247.8 ± 12.8 102.4 ± 8.0

RMSE (absolute) 0.19 24.4 24.5
RMSE (%) 7.4 10.7 20.0

d 0.73 −1.26 1.37
SRD 0.32 (12%) 30.3 (13%) 30.4 (25%)

Method of calculation effect
Running speed effect

Interaction effect

p = 0.002 p < 0.001 p < 0.001
p < 0.001 p < 0.001 p < 0.001
p < 0.001 p < 0.001 p < 0.001

Note: Values are presented as mean ± standard deviation.

4. Discussion

According to the first hypothesis, an RMSE equal to 0.15 BW was reported for Fz,max.
Moreover, according to the second hypothesis, an RMSE equal to 20 ms was obtained for tc
and t f . Our findings demonstrated systematic and proportional biases, as well as significant
differences between gold standard and estimated Fz,max, tc, and t f at each speed employed.
Nonetheless, systematic biases averaged over running speeds were small (0.07 BW and
13 ms) and the RMSEs were smaller than the SRDs, indicating no clinically important
difference between the GSM and IMUM. Hence, the present findings support the use of the
IMUM to estimate Fz,max, tc, and t f for level treadmill runs at low running speeds.

A systematic bias of 0.07 BW and an RMSE of 0.15 BW (6%) were reported for Fz,max.
These errors seemed to be comparable to those obtained using a 10 Hz low-pass cutoff
frequency [24], though the bias and RMSE were not explicitly reported [~0.15 BW by visual
inspection of the fourth figure in [24] (14–19 km/h)]. In addition, the RMSE found for Fz,max
in the present study was equal to the RMSE obtained using two different machine learning
algorithms (linear regression and quantile regression forest) [25]. This result suggests
that combining IMU data with machine learning algorithms seems to not necessarily be
advantageous to estimate Fz,max. Using inertial sensors placed on the legs along the tibial
axis, Charry, et al. [53] obtained a 6% error on Fz,max (6–21 km/h), while Wouda, et al. [54]
achieved a 3% error (10–14 km/h) by using three IMUs (two on lower legs and one on
pelvis) and two artificial neural networks. Besides, an RMSE ≤ 0.17 BW was reported
when estimating Fz,max using 3D kinematic data of the center of mass or sacral marker
trajectory [26]. An RMSE close to 0.15 BW was reported by Pavei, Seminati, Storniolo and
Peyré-Tartaruga [27] when the whole-body center of mass acceleration, obtained using
kinematic data to estimate Fz,max for running speeds ranging from 7 to 20 km/h, was
used for a single participant. Thus, the errors reported for Fz,max in the present study were
comparable to those obtained using previously published methods [24–27,53,54]. Moreover,
the RMSE of Fz,max was smaller than its SRD for each tested speed (Table 2), indicating no
clinically important difference between Fz,max values obtained using the GSM and IMUM.

The IMUM reported a systematic bias of 13 ms and an RMSE of 20 ms (8%) for tc
(Tables 1 and 2). These errors seemed to be smaller than those obtained using a 5 Hz
low-pass cutoff frequency [24], though the bias and RMSE were not explicitly reported
[~30 ms by visual inspection of the fifth figure in [24] (14–19 km/h)]. The IMUM employed
in the present study might be advantageous compared to that previously used [24] because
the present IMUM utilized a single low-pass cutoff frequency (5 Hz) to estimate both
Fz,max and tc while the previous method required two different cutoff frequencies (10 Hz
for Fz,max and 5 Hz for tc). However, the present errors were much higher than those
reported by Lee, Mellifont and Burkett [31] (0 ms). These authors used specific spikes
in an unfiltered forward acceleration signal recorded by a sacral-mounted IMU sampled
at 100 Hz to detect FS and TO events. However, these spikes were not present in most
of the data recorded in the present study [see the first figure in in Lee, Mellifont and
Burkett [31] vs. Figure 1 herein]. One possible explanation could be that the 10 national
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level runners recruited by these authors shared a very similar running pattern with specific
acceleration spikes that were not always observed in the present study. As a side note, the
anterior–posterior acceleration signal recorded by the IMU (Figure 1) was quite different
from that depicted in Lee, Mellifont and Burkett [31], and both anterior–posterior IMU
signals were different from that assessed using the gold standard anterior–posterior ground
reaction force signal [55]. This was also previously observed when reconstructing the
anterior–posterior acceleration signal using 3D kinematic trajectories [27]. Besides, the
20 ms RMSE obtained in our study is almost two times larger than the 10 ms RMSE reported
by Alcantara, Day, Hahn and Grabowski [25]. Such a difference might be explained by the
fact that these authors predicted tc using two different machine learning algorithms (linear
regression and quantile regression forest) while the present study estimates tc directly from
the post-processing of the vertical acceleration signal recorded by the sacral-mounted IMU.
Moreover, such a difference suggests that combining IMU data with a machine learning
algorithm may improve the estimations of tc and t f compared to those obtained using IMU
data alone. However, the robustness of the machine learning algorithms employed by these
authors might be questioned as these algorithms were trained on 28 runners and tested on
9 runners, which is below the median value of 40 participants used for this kind of research
question [56]. Nonetheless, further studies would be required to evaluate if applying a
machine learning algorithm on our IMU data, which contains 100 participants, would be
more accurate in estimating tc and t f . Using foot-worn inertial sensors, the systematic bias
on tc was ~10 ms (10–20 km/h) [33] and the RMSE was ~10 ms (11 km/h) [38]. Hence,
the errors reported for the IMUM [systematic bias: 7 ms; RMSE: 15 ms (6%) at 11 km/h]
were comparable to those previously reported using foot-worn inertial sensors. In addition,
Falbriard, Meyer, Mariani, Millet and Aminian [33] reported a proportional bias for tc, as
in the present study. Using 3D kinematic data, the RMSE was larger or equal to 15 ms for
tc (20 km/h) [46] while using a photoelectric system, a bias of ~1 ms was reported for tc,
though validated against motion capture (12 km/h) [57]. Therefore, the error reported for
the IMUM when estimating tc was comparable to the error obtained using an optoelectronic
system [46], but was much larger than the error obtained using a photoelectric system [57].
However, even though these two systems can be used outside the laboratory [20,21], they
suffer from a lack of portability and do not allow continuous data collection. For this reason,
using a single IMU was advantageous by its portability, and was shown to be quite accurate
to estimate tc, and therefore t f . Indeed, when the error is calculated for many running
steps, as tc and t f are based on the same TO events, the bias of t f is the negative of the bias
of tc, and the RMSEs for tc and t f are mostly the same in absolute (ms) units. Furthermore,
tc and t f reported smaller RMSEs than their corresponding SRDs for each tested speed
(Table 2), indicating no clinically important differences between tc and t f values obtained
using the GSM and IMUM.

A significant effect of running speed was observed for Fz,max, tc, and t f (Table 2).
Moreover, the most accurate estimation was given at 11 km/h (Tables 1 and 2). These
findings could not readily be explained. However, further studies should focus on testing
several slower and faster running speeds to further decipher the running speed effect.
Then, future studies could focus on constructing a more sophisticated model, considering
the running speed to try to improve the estimations of Fz,max, tc, and t f .

A few limitations to this study exist. The IMUM was compared to the GSM only
at low running speeds during treadmill runs. However, the IMUM might also perform
well overground because spatiotemporal variables between treadmill and overground
running are largely comparable [58], although controversial [59]. Nonetheless, further
studies should focus on comparing the IMUM to the GSM using additional conditions
(i.e., faster speeds, positive and negative slopes, and different types of ground). Moreover,
kinetic and IMU data were not exactly synchronized. Therefore, further studies should
focus on synchronizing these data and performing FS and TO events comparisons between
the GSM and IMUM. This may be useful if the assessment of metrics at specific FS and TO
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events is needed, e.g., knee angle at FS, using additional IMUs [60] synchronized with the
sacral-mounted IMU providing FS and TO events.

5. Conclusions

This study estimated Fz,max, tc, and t f using the vertical acceleration signal recorded
by a single sacral-mounted IMU, which was filtered using a truncated Fourier series to
5 Hz. The comparison between the GSM and IMUM depicted an RMSE of 0.15 BW for
Fz,max, and of 20 ms for tc and t f , and small systematic biases of 0.07 BW for Fz,max, and
13 ms for tc and t f (average over running speeds). These errors were comparable to those
obtained using previously published methods. Moreover, the RMSEs were smaller than
the SRDs, indicating no clinically important difference between the GSM and IMUM.
Therefore, the findings of this study support the use of the IMUM to estimate Fz,max, tc,
and t f for level treadmill runs at low running speeds, especially because an IMU has the
advantage to be low-cost and portable, and therefore seems very practical for coaches and
healthcare professionals.
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