19 research outputs found

    Cephalosporin-induced Hemolytic Anemia in a Sicilian Child.

    Get PDF
    A 27-month-old child developed acute hemolysis on two occasions after the administration of cephalosporin. On the first occasion, hemolysis was intravascular and was due to the formation of complexes between antibodies and the drug, which bound to red blood cells and caused severe hemolysis. On the second occasion, hemolysis was extravascular and was probably due to antibody-dependent cell mediated cytotoxicity. Marked increases in levels of CD19(+), and CD57(+) CD8(+) cells were detected among the subpopulations of the patient's lymphocytes but only in the level of CD19(+) cells from the patient's father, after incubation of a sample of whole blood with a solution of cephalosporins. These results might explain the differences between the immune response of the patient and those of other members of his family and of an unrelated control

    Roles of the Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer and aging

    Get PDF
    Dysregulated signaling through the Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR pathways is often the result of genetic alterations in critical components in these pathways or upstream activators. Unrestricted cellular proliferation and decreased sensitivity to apoptotic-inducing agents are typically associated with activation of these pro-survival pathways. This review discusses the functions these pathways have in normal and neoplastic tissue growth and how they contribute to resistance to apoptotic stimuli. Crosstalk and commonly identified mutations that occur within these pathways that contribute to abnormal activation and cancer growth will also be addressed. Finally the recently described roles of these pathways in cancer stem cells, cellular senescence and aging will be evaluated. Controlling the expression of these pathways could ameliorate human health

    Advances in Targeting Signal Transduction Pathways

    Get PDF
    Over the past few years, significant advances have occurred in both our understanding of the complexity of signal transduction pathways as well as the isolation of specific inhibitors which target key components in those pathways. Furthermore critical information is being accrued regarding how genetic mutations can affect the sensitivity of various types of patients to targeted therapy. Finally, genetic mechanisms responsible for the development of resistance after targeted therapy are being discovered which may allow the creation of alternative therapies to overcome resistance. This review will discuss some of the highlights over the past few years on the roles of key signaling pathways in various diseases, the targeting of signal transduction pathways and the genetic mechanisms governing sensitivity and resistance to targeted therapies

    The Role of B-RAF Mutations in Melanoma and the Induction of EMT via Dysregulation of the NF-κB/Snail/RKIP/PTEN Circuit

    No full text
    Melanoma is a highly metastatic cancer, and there are no current therapeutic modalities to treat this deadly malignant disease once it has metastasized. Melanoma cancers exhibit B-RAF mutations in up to 70% of cases. B-RAF mutations are responsible, in large part, for the constitutive hyperactivation of survival/antiapoptotic pathways such as the MAPK, NF-κB, and PI3K/AKT. These hyperactivated pathways regulate the expression of genes targeting the initiation of the metastatic cascade, namely, the epithelial to mesenchymal transition (EMT). EMT is the result of the expression of mesenchymal gene products such as fibronectin, vimentin, and metalloproteinases and the invasion and inhibition of E-cadherin. The above pathways cross-talk and regulate each other’s activities and functions. For instance, the NF-κB pathway directly regulates EMT through the transcription of gene products involved in EMT and indirectly through the transcriptional up-regulation of the metastasis inducer Snail. Snail, in turn, suppresses the expression of the metastasis suppressor gene product Raf kinase inhibitor protein RKIP (inhibits the MAPK and the NF-κB pathways) as well as PTEN (inhibits the PI3K/AKT pathway). The role of B-RAF mutations in melanoma and their direct role in the induction of EMT are not clear. This review discusses the hypothesis that B-RAF mutations are involved in the dysregulation of the NF-κB/Snail/RKIP/PTEN circuit and in both the induction of EMT and metastasis. The therapeutic implications of the dysregulation of the above circuit by B-RAF mutations are such that they offer novel targets for therapeutic interventions in the treatment of EMT and metastasis

    Anticancer properties of the novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide in vitro and in vivo

    No full text
    Preclinical studies have shown that nitric oxide (NO)donating nonsteroidal anti-inflammatory drugs possess anticancer activities. Here, we report in vitro and in vivo studies showing the antitumor effect of the NO-donating isoxazole derivative (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid (GIT-27NO). GIT-27NO, but not the NO-deprived parental compound VGX-1027, significantly affected viability of both rodent (L929, B16, and C6) and human (U1251, BT20, HeLa, and LS174) tumor cell lines. GIT-27NO triggered either apoptotic cell death (e.g., L929 cells) or autophagic cell death (C6 and B16 cells). Moreover, GIT-27NO hampered the viability of cisplatin-resistant B16 cells. NO scavenger hemoglobin completely prevented GIT-27NO-induced death, indicating that NO release mediated the tumoricidal effect of the compound. Increase in intracellular NO upon on the treatment was associated with intensified production of reactive oxygen species, whereas their neutralization by antioxidant N-acetylcysteine resulted in partial recovery of cell viability. The antitumor activity of the drug was mediated by the selective activation of mitogen-activated protein kinases in a cell-specific manner and was neutralized by their specific inhibitors. In vivo treatment with GIT-27NO significantly reduced the B16 melanoma growth in syngeneic C57BL/6 mice. The therapeutic effect occurred at dose (0.5 mg/mouse) up to 160 times lower than those needed to induce acute lethality (80 mg/mouse). In addition, a dose of GIT-27NO five times higher than that found effective in the melanoma model was well tolerated by the mice when administered for 4 consecutive weeks. These data warrant additional studies to evaluate the possible translation of these findings to the clinical setting.nul

    Anticancer properties of the novel nitric oxide-donating compound (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid-nitric oxide in vitro and in vivo

    No full text
    Preclinical studies have shown that nitric oxide (NO)donating nonsteroidal anti-inflammatory drugs possess anticancer activities. Here, we report in vitro and in vivo studies showing the antitumor effect of the NO-donating isoxazole derivative (S,R)-3-phenyl-4,5-dihydro-5-isoxazole acetic acid (GIT-27NO). GIT-27NO, but not the NO-deprived parental compound VGX-1027, significantly affected viability of both rodent (L929, B16, and C6) and human (U1251, BT20, HeLa, and LS174) tumor cell lines. GIT-27NO triggered either apoptotic cell death (e.g., L929 cells) or autophagic cell death (C6 and B16 cells). Moreover, GIT-27NO hampered the viability of cisplatin-resistant B16 cells. NO scavenger hemoglobin completely prevented GIT-27NO-induced death, indicating that NO release mediated the tumoricidal effect of the compound. Increase in intracellular NO upon on the treatment was associated with intensified production of reactive oxygen species, whereas their neutralization by antioxidant N-acetylcysteine resulted in partial recovery of cell viability. The antitumor activity of the drug was mediated by the selective activation of mitogen-activated protein kinases in a cell-specific manner and was neutralized by their specific inhibitors. In vivo treatment with GIT-27NO significantly reduced the B16 melanoma growth in syngeneic C57BL/6 mice. The therapeutic effect occurred at dose (0.5 mg/mouse) up to 160 times lower than those needed to induce acute lethality (80 mg/mouse). In addition, a dose of GIT-27NO five times higher than that found effective in the melanoma model was well tolerated by the mice when administered for 4 consecutive weeks. These data warrant additional studies to evaluate the possible translation of these findings to the clinical setting.nul
    corecore