222 research outputs found
Recommended from our members
Ice-COLD-PCR enables rapid amplification and robust enrichment for low-abundance unknown DNA mutations
Identifying low-abundance mutations within wild-type DNA is important in several fields of medicine, including cancer, prenatal diagnosis and infectious diseases. However, utilizing the clinical and diagnostic potential of rare mutations is limited by sensitivity of the molecular techniques employed, especially when the type and position of mutations are unknown. We have developed a novel platform that incorporates a synthetic reference sequence within a polymerase chain reaction (PCR) reaction, designed to enhance amplification of unknown mutant sequences during COLD-PCR (CO-amplification at Lower Denaturation temperature). This new platform enables an Improved and Complete Enrichment (ice-COLD-PCR) for all mutation types and eliminates shortcomings of previous formats of COLD-PCR. We evaluated ice-COLD-PCR enrichment in regions of TP53 in serially diluted mutant and wild-type DNA mixtures. Conventional-PCR, COLD-PCR and ice-COLD-PCR amplicons were run in parallel and sequenced to determine final mutation abundance for a range of mutations representing all possible single base changes. Amplification by ice-COLD-PCR enriched all mutation types and allowed identification of mutation abundances down to 1%, and 0.1% by Sanger sequencing or pyrosequencing, respectively, surpassing the capabilities of other forms of PCR. Ice-COLD-PCR will help elucidate the clinical significance of low-abundance mutations and our understanding of cancer origin, evolution, recurrence-risk and treatment diagnostics
Recommended from our members
Enrichment of Mutations in Multiple DNA Sequences Using COLD-PCR in Emulsion
Background: Multiplex detection of low-level mutant alleles in the presence of wild-type DNA would be useful for several fields of medicine including cancer, pre-natal diagnosis and infectious diseases. COLD-PCR is a recently developed method that enriches low-level mutations during PCR cycling, thus enhancing downstream detection without the need for special reagents or equipment. The approach relies on the differential denaturation of DNA strands which contain Tm-lowering mutations or mismatches, versus ‘homo-duplex’ wild-type DNA. Enabling multiplex-COLD-PCR that can enrich mutations in several amplicons simultaneously is desirable but technically difficult to accomplish. Here we describe the proof of principle of an emulsion-PCR based approach that demonstrates the feasibility of multiplexed-COLD-PCR within a single tube, using commercially available mutated cell lines. This method works best with short amplicons; therefore, it could potentially be used on highly fragmented samples obtained from biological material or FFPE specimens. Methods: Following a multiplex pre-amplification of TP53 exons from genomic DNA, emulsions which incorporate the multiplex product, PCR reagents and primers specific for a given TP53 exon are prepared. Emulsions with different TP53 targets are then combined in a single tube and a fast-COLD-PCR program that gradually ramps up the denaturation temperature over several PCR cycles is applied (temperature-tolerant, TT-fast-eCOLD-PCR). The range of denaturation temperatures applied encompasses the critical denaturation temperature corresponding to all the amplicons included in the reaction, resulting to a gradual enrichment of mutations within all amplicons encompassed by emulsion. Results: Validation for TT-fast-eCOLD-PCR is provided for TP53 exons 6–9. Using dilutions of mutated cell-line into wild-type DNA, we demonstrate simultaneous mutation enrichment between 7 to 15-fold in all amplicons examined. Conclusions: TT-fast-eCOLD-PCR expands the versatility of COLD-PCR and enables high-throughput enrichment of low-level mutant alleles over multiple sequences in a single tube
Recommended from our members
Differential strand separation at critical temperature: A minimally disruptive enrichment method for low-abundance unknown DNA mutations
Detection of low-level DNA variations in the presence of wild-type DNA is important in several fields of medicine, including cancer, prenatal diagnosis and infectious diseases. PCR-based methods to enrich mutations during amplification have limited multiplexing capability, are mostly restricted to known mutations and are prone to polymerase or mis-priming errors. Here, we present Differential Strand Separation at Critical Temperature (DISSECT), a method that enriches unknown mutations of targeted DNA sequences purely based on thermal denaturation of DNA heteroduplexes without the need for enzymatic reactions. Target DNA is pre-amplified in a multiplex reaction and hybridized onto complementary probes immobilized on magnetic beads that correspond to wild-type DNA sequences. Presence of any mutation on the target DNA forms heteroduplexes that are subsequently denatured from the beads at a critical temperature and selectively separated from wild-type DNA. We demonstrate multiplexed enrichment by 100- to 400-fold for KRAS and TP53 mutations at multiple positions of the targeted sequence using two to four successive cycles of DISSECT. Cancer and plasma-circulating DNA samples containing traces of mutations undergo mutation enrichment allowing detection via Sanger sequencing or high-resolution melting. The simplicity, scalability and reliability of DISSECT make it a powerful method for mutation enrichment that integrates well with existing downstream detection methods
Methylation-Specific Loop-Mediated Isothermal Amplification for Detecting Hypermethylated DNA in Simplex and Multiplex Formats
BACKGROUND
Aberrant DNA methylation of gene promoters and the associated silencing of tumor suppressor genes are recognized as mechanisms contributing to tumor development. Therefore, detection of promoter hypermethylation is becoming important for diagnosis, prognosis, and aiding the design of cancer therapies. We describe a novel isothermal method for the detection of DNA hypermethylation.
METHODS
Methylation-specific loop-mediated isothermal amplification (MS-LAMP) is a novel adaptation of LAMP. MS-LAMP was used for the highly specific detection of hypermethylated CpGs in the promoters of the CDKN2A [cyclin-dependent kinase inhibitor 2A (melanoma, p16, inhibits CDK4)], GATA5 (GATA binding protein 5), and DAPK1 (death-associated protein kinase 1) genes. The reactions occurred under isothermal conditions with 3 primer sets specific for methylated promoters. Both turbidimetry and fluorescence were used for detection. The MS-LAMP assay was validated with bisulfite-treated plasmid and genomic DNA controls of known methylation status and was applied to detect hypermethylation in 18 clinical tumor samples. A multiplex MS-LAMP for CDKN2A, GATA5, and DAPK1 was also validated with the aid of synthetic positive and negative controls.
RESULTS
The MS-LAMP assay showed high specificity with plasmid and genomic DNA targets in reactions carried out in <1 h. The assay had a detection limit of approximately 30 copies of methylated target sequence and a selectivity of 0.5% methylated DNA in a mixture with unmethylated DNA. Compared with methylation-specific PCR, the MS-LAMP assay detected lower rates of methylation in lung adenocarcinoma samples. Simultaneous multiplex detection of hypermethylation in the 3 targets (CDKN2A, GATA5, and DAPK1) was readily achieved with the MS-LAMP assay in both the turbidimetric and fluorescence detection formats.
CONCLUSIONS
MS-LAMP provides a highly specific isothermal method for methylation detection and is well suited for multiplex approaches
Elimination of unaltered DNA in mixed clinical samples via nuclease-assisted minor-allele enrichment
Presence of excess unaltered, wild-type (WT) DNA providing no information of biological or clinical value often masks rare alterations containing diagnostic or therapeutic clues in cancer, prenatal diagnosis, infectious diseases or organ transplantation. With the surge of high-throughput technologies there is a growing demand for removing unaltered DNA over large pools-of-sequences. Here we present nuclease-assisted minor-allele enrichment with probe-overlap (NaME-PrO), a single-step approach with broad genome coverage that can remove WT-DNA from numerous sequences simultaneously, prior to genomic analysis. NaME-PrO employs a double-strand-DNA-specific nuclease and overlapping oligonucleotide-probes interrogating WT-DNA targets and guiding nuclease digestion to these sites. Mutation-containing DNA creates probe-DNA mismatches that inhibit digestion, thus subsequent DNA-amplification magnifies DNA-alterations at all selected targets. We demonstrate several-hundred-fold mutation enrichment in diverse human samples on multiple clinically relevant targets including tumor samples and circulating DNA in 50-plex reactions. Enrichment enables routine mutation detection at 0.01% abundance while by adjusting conditions it is possible to sequence mutations down to 0.00003% abundance, or to scan tumor-suppressor genes for rare mutations. NaME-PrO introduces a simple and highly parallel process to remove un-informative DNA sequences and unmask clinically and biologically useful alterations
Recommended from our members
COLD-PCR Amplification of Bisulfite-Converted DNA Allows the Enrichment and Sequencing of Rare Un-Methylated Genomic Regions
Aberrant hypo-methylation of DNA is evident in a range of human diseases including cancer and diabetes. Development of sensitive assays capable of detecting traces of un-methylated DNA within methylated samples can be useful in several situations. Here we describe a new approach, fast-COLD-MS-PCR, which amplifies preferentially un-methylated DNA sequences. By employing an appropriate denaturation temperature during PCR of bi-sulfite converted DNA, fast-COLD-MS-PCR enriches un-methylated DNA and enables differential melting analysis or bisulfite sequencing. Using methylation on the MGMT gene promoter as a model, it is shown that serial dilutions of controlled methylation samples lead to the reliable sequencing of un-methylated sequences down to 0.05% un-methylated-to-methylated DNA. Screening of clinical glioma tumor and infant blood samples demonstrated that the degree of enrichment of un-methylated over methylated DNA can be modulated by the choice of denaturation temperature, providing a convenient method for analysis of partially methylated DNA or for revealing and sequencing traces of un-methylated DNA. Fast-COLD-MS-PCR can be useful for the detection of loss of methylation/imprinting in cancer, diabetes or diet-related methylation changes
A comparison of RNA amplification techniques at sub-nanogram input concentration
<p>Abstract</p> <p>Background</p> <p>Gene expression profiling of small numbers of cells requires high-fidelity amplification of sub-nanogram amounts of RNA. Several methods for RNA amplification are available; however, there has been little consideration of the accuracy of these methods when working with very low-input quantities of RNA as is often required with rare clinical samples. Starting with 250 picograms-3.3 nanograms of total RNA, we compared two linear amplification methods 1) modified T7 and 2) Arcturus RiboAmp HS and a logarithmic amplification, 3) Balanced PCR. Microarray data from each amplification method were validated against quantitative real-time PCR (QPCR) for 37 genes.</p> <p>Results</p> <p>For high intensity spots, mean Pearson correlations were quite acceptable for both total RNA and low-input quantities amplified with each of the 3 methods. Microarray filtering and data processing has an important effect on the correlation coefficient results generated by each method. Arrays derived from total RNA had higher Pearson's correlations than did arrays derived from amplified RNA when considering the entire unprocessed dataset, however, when considering a gene set of high signal intensity, the amplified arrays had superior correlation coefficients than did the total RNA arrays.</p> <p>Conclusion</p> <p>Gene expression arrays can be obtained with sub-nanogram input of total RNA. High intensity spots showed better correlation on array-array analysis than did unfiltered data, however, QPCR validated the accuracy of gene expression array profiling from low-input quantities of RNA with all 3 amplification techniques. RNA amplification and expression analysis at the sub-nanogram input level is both feasible and accurate if data processing is used to focus attention to high intensity genes for microarrays or if QPCR is used as a gold standard for validation.</p
- …