777 research outputs found

    Sediment and Hydrologic Budgets for the Lake of the Woods Watershed, Champaign County, Illinois

    Get PDF
    published or submitted for publicationis peer reviewedOpe

    Visualizing Global Properties of a Molecular Dynamics Trajectory

    Get PDF

    A class of exactly solvable Schroedinger equation with moving boundary conditions

    Full text link
    Using first and second order supersymmetry formalism we obtain a class of exactly solvable potentials subject to moving boundary conditions

    Modeling the Hydration Layer around Proteins: HyPred

    Get PDF
    AbstractProtein hydration plays an integral role in determining protein function and stability. We develop a simple method with atomic level precision for predicting the solvent density near the surface of a protein. A set of proximal radial distribution functions are defined and calculated for a series of different atom types in proteins using all-atom, explicit solvent molecular dynamic simulations for three globular proteins. A major improvement in predicting the hydration layer is found when the protein is held immobile during the simulations. The distribution functions are used to develop a model for predicting the hydration layer with sub-1-Ångstrom resolution without the need for additional simulations. The model and the distribution functions for a given protein are tested in their ability to reproduce the hydration layer from the simulations for that protein, as well as those for other proteins and for simulations in which the protein atoms are mobile. Predictions for the density of water in the hydration shells are then compared with high occupancy sites observed in crystal structures. The accuracy of both tests demonstrates that the solvation model provides a basis for quantitatively understanding protein solvation and thereby predicting the hydration layer without additional simulations

    Trinucleotide cassettes increase diversity of T7 phage-displayed peptide library

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Amino acid sequence diversity is introduced into a phage-displayed peptide library by randomizing library oligonucleotide DNA. We recently evaluated the diversity of peptide libraries displayed on T7 lytic phage and M13 filamentous phage and showed that T7 phage can display a more diverse amino acid sequence repertoire due to differing processes of viral morphogenesis.</p> <p>Methods</p> <p>In this study, we evaluated and compared the diversity of a 12-mer T7 phage-displayed peptide library randomized using codon-corrected trinucleotide cassettes with a T7 and an M13 12-mer phage-displayed peptide library constructed using the degenerate codon randomization method.</p> <p>Results</p> <p>We herein demonstrate that the combination of trinucleotide cassette amino acid codon randomization and T7 phage display construction methods resulted in a significant enhancement to the functional diversity of a 12-mer peptide library. This novel library exhibited superior amino acid uniformity and order-of-magnitude increases in amino acid sequence diversity as compared to degenerate codon randomized peptide libraries. Comparative analyses of the biophysical characteristics of the 12-mer peptide libraries revealed the trinucleotide cassette-randomized library to be a unique resource.</p> <p>Conclusion</p> <p>The combination of T7 phage display and trinucleotide cassette randomization resulted in a novel resource for the potential isolation of binding peptides for new and previously studied molecular targets.</p
    • …
    corecore