522 research outputs found

    Microscopic/stochastic timesteppers and coarse control: a kinetic Monte Carlo example

    Full text link
    Coarse timesteppers provide a bridge between microscopic / stochastic system descriptions and macroscopic tasks such as coarse stability/bifurcation computations. Exploiting this computational enabling technology, we present a framework for designing observers and controllers based on microscopic simulations, that can be used for their coarse control. The proposed methodology provides a bridge between traditional numerical analysis and control theory on the one hand and microscopic simulation on the other

    Knaster's problem for (Z2)k(Z_2)^k-symmetric subsets of the sphere S2k1S^{2^k-1}

    Full text link
    We prove a Knaster-type result for orbits of the group (Z2)k(Z_2)^k in S2k1S^{2^k-1}, calculating the Euler class obstruction. Among the consequences are: a result about inscribing skew crosspolytopes in hypersurfaces in R2k\mathbb R^{2^k}, and a result about equipartition of a measures in R2k\mathbb R^{2^k} by (Z2)k+1(Z_2)^{k+1}-symmetric convex fans

    Engineering methodology for calculation of corrugated beams for bending and torsion. Flat bend form stability

    Get PDF
    An engineering design procedure for calculating bending with torsion in corrugated beams, including finding the critical load of general stability, implemented in the commonly used MS Excel spreadsheet and verified in the LIRA-SAPR software package, has been proposed. The method makes it possible to take into account the beams section variability and corrugation parameters, to estimate the loading eccentricity effect, availability of supporting ribs and reinforcements of the compressed chord from the bending plane. Calculation results of particular design solutions for corrugated beams with definition of critical loads at transverse bending are given. Results of test calculation of a bent channel beam with calculation of stress-strain state parameters and its verification with the LIRA-SAP software package are given

    Critical Behavior in Light Nuclear Systems: Experimental Aspects

    Get PDF
    An extensive experimental survey of the features of the disassembly of a small quasi-projectile system with AA \sim 36, produced in the reactions of 47 MeV/nucleon 40^{40}Ar + 27^{27}Al, 48^{48}Ti and 58^{58}Ni, has been carried out. Nuclei in the excitation energy range of 1-9 MeV/u have been investigated employing a new method to reconstruct the quasi-projectile source. At an excitation energy \sim 5.6 MeV/nucleon many observables indicate the presence of maximal fluctuations in the de-excitation processes. The fragment topological structure shows that the rank sorted fragments obey Zipf's law at the point of largest fluctuations providing another indication of a liquid gas phase transition. The caloric curve for this system shows a monotonic increase of temperature with excitation energy and no apparent plateau. The temperature at the point of maximal fluctuations is 8.3±0.58.3 \pm 0.5 MeV. Taking this temperature as the critical temperature and employing the caloric curve information we have extracted the critical exponents β\beta, γ\gamma and σ\sigma from the data. Their values are also consistent with the values of the universality class of the liquid gas phase transition. Taken together, this body of evidence strongly suggests a phase change in an equilibrated mesoscopic system at, or extremely close to, the critical point.Comment: Physical Review C, in press; some discussions about the validity of excitation energy in peripheral collisions have been added; 24 pages and 32 figures; longer abstract in the preprin

    Evidence of Critical Behavior in the Disassembly of Nuclei with A ~ 36

    Full text link
    A wide variety of observables indicate that maximal fluctuations in the disassembly of hot nuclei with A ~ 36 occur at an excitation energy of 5.6 +- 0.5 MeV/u and temperature of 8.3 +- 0.5 MeV. Associated with this point of maximal fluctuations are a number of quantitative indicators of apparent critical behavior. The associated caloric curve does not appear to show a flattening such as that seen for heavier systems. This suggests that, in contrast to similar signals seen for liquid-gas transitions in heavier nuclei, the observed behavior in these very light nuclei is associated with a transition much closer to the critical point.Comment: v2: Major changes, new model calculations, new figure

    Tracing the Evolution of Temperature in Near Fermi Energy Heavy Ion Collisions

    Get PDF
    The kinetic energy variation of emitted light clusters has been employed as a clock to explore the time evolution of the temperature for thermalizing composite systems produced in the reactions of 26A, 35A and 47A MeV 64^{64}Zn with 58^{58}Ni, 92^{92}Mo and 197^{197}Au. For each system investigated, the double isotope ratio temperature curve exhibits a high maximum apparent temperature, in the range of 10-25 MeV, at high ejectile velocity. These maximum values increase with increasing projectile energy and decrease with increasing target mass. The time at which the maximum in the temperature curve is reached ranges from 80 to 130 fm/c after contact. For each different target, the subsequent cooling curves for all three projectile energies are quite similar. Temperatures comparable to those of limiting temperature systematics are reached 30 to 40 fm/c after the times corresponding to the maxima, at a time when AMD-V transport model calculations predict entry into the final evaporative or fragmentation stage of de-excitation of the hot composite systems. Evidence for the establishment of thermal and chemical equilibrium is discussed.Comment: 9 pages, 5 figure

    Towards the critical behavior for the light nuclei by NIMROD detector

    Get PDF
    The critical behavior for the light nuclei with A36\sim 36 has been investigated experimentally by the NIMROD multi-detectors. The wide variety of observables indicate the critical point has been reached in the disassembly of hot nuclei at an excitation energy of 5.6±\pm0.5 MeV/u.Comment: 4 pages, 2 figures; Proceeding of 18th Nuclear Physics Division Conference of the Euro. Phys. Society (NPDC18) "Phase transitions in strongly interacting matter", Prague, 23.8.-29.8. 2004. To be published in Nuclear Physics

    A Ghoshal-like Test of Equilibration in Near-Fermi-Energy Heavy Ion Collisions

    Get PDF
    Calorimetric and coalescence techniques have been employed to probe equilibration for hot nuclei produced in heavy ion collisions of 35 to 55 MeV/u projectiles with medium mass targets. Entrance channel mass asymmetries and energies were selected in order that very hot composite nuclei of similar mass and excitation would remain after early stage pre-equilibrium particle emission. Inter-comparison of the properties and de-excitation patterns for these different systems provides evidence for the production of hot nuclei with decay patterns relatively independent of the specific entrance channel.Comment: 7 pages, 2 figure

    Evaluation of the toxicity of synthesized substances - candidates with antiviral activity against SARS-CoV-2 on model cell lines

    Get PDF
    The aim of the study – determination of cellular toxicity of customer-provided replicas of triazavirin codenamed T01, T02, and T03 in a human cell culture model.Цель исследования – определение клеточной токсичности предоставленных заказчиком реплик триазавирина под кодовым наименованием Т01, Т02, и Т03 на модели культур клеток человека

    Sequential Decay Distortion of Goldhaber Model Widths for Spectator Fragments

    Get PDF
    Momentum widths of the primary fragments and observed final fragments have been investigated within the framework of an Antisymmetrized Molecular Dynamics transport model code (AMD-V) with a sequential decay afterburner (GEMINI). It is found that the secondary evaporation effects cause the values of a reduced momentum width, σ0\sigma_0, derived from momentum widths of the final fragments to be significantly less than those appropriate to the primary fragment but close to those observed in many experiments. Therefore, a new interpretation for experiemental momentum widths of projectile-like fragments is presented.Comment: 4 pages, 3 figs. Accepted for publication in Phys. Rev. C as a Rapid Communicatio
    corecore