83 research outputs found

    Perforin Expression Directly Ex Vivo by HIV-Specific CD8+ T-Cells Is a Correlate of HIV Elite Control

    Get PDF
    Many immune correlates of CD8+ T-cell-mediated control of HIV replication, including polyfunctionality, proliferative ability, and inhibitory receptor expression, have been discovered. However, no functional correlates using ex vivo cells have been identified with the known ability to cause the direct elimination of HIV-infected cells. We have recently discovered the ability of human CD8+ T-cells to rapidly upregulate perforin—an essential molecule for cell-mediated cytotoxicity—following antigen-specific stimulation. Here, we examined perforin expression capability in a large cross-sectional cohort of chronically HIV-infected individuals with varying levels of viral load: elite controllers (n = 35), viremic controllers (n = 29), chronic progressors (n = 27), and viremic nonprogressors (n = 6). Using polychromatic flow cytometry and standard intracellular cytokine staining assays, we measured perforin upregulation, cytokine production, and degranulation following stimulation with overlapping peptide pools encompassing all proteins of HIV. We observed that HIV-specific CD8+ T-cells from elite controllers consistently display an enhanced ability to express perforin directly ex vivo compared to all other groups. This ability is not restricted to protective HLA-B haplotypes, does not require proliferation or the addition of exogenous factors, is not restored by HAART, and primarily originates from effector CD8+ T-cells with otherwise limited functional capability. Notably, we found an inverse relationship between HIV-specific perforin expression and viral load. Thus, the capability of HIV-specific CD8+ T-cells to rapidly express perforin defines a novel correlate of control in HIV infection

    Lack of Detectable HIV-1–Specific CD8+ T Cell Responses in Zambian HIV-1–Exposed Seronegative Partners of HIV-1–Positive Individuals

    Get PDF
    Human immunodeficiency virus type 1 (HIV-1)–specific T cell responses were characterized in a blinded study involving infected individuals and their seronegative exposed uninfected (EU) partners from Lusaka, Zambia. HIV-1–specific T cell responses were detected ex vivo in all infected individuals and amplified, on average, 27-fold following in vitro expansion. In contrast, no HIV-1–specific T cell responses were detected in any of the EU partners ex vivo or following in vitro expansion. These data demonstrate that the detection of HIV-1–specific T cell immunity in EU individuals is not universal and that alternative mechanisms may account for protection in these individuals

    Amiloride Enhances Antigen Specific CTL by Faciliting HBV DNA Vaccine Entry into Cells

    Get PDF
    The induction of relatively weak immunity by DNA vaccines in humans can be largely attributed to the low efficiency of transduction of somatic cells. Although formulation with liposomes has been shown to enhance DNA transduction of cultured cells, little, if any, effect is observed on the transduction of somatic tissues and cells. To improve the rate of transduction, DNA vaccine delivery by gene gun and the recently developed electroporation techniques have been employed. We report here that to circumvent requirement for such equipment, amiloride, a drug that is prescribed for hypertension treatment, can accelerate plasmid entry into antigen presenting cells (APCs) both in vitro and in vivo. The combination induced APCs more dramatically in both maturation and cytokine secretion. Amiloride enhanced development of full CD8 cytolytic function including induction of high levels of antigen specific CTL and expression of IFN-γ+perforin+granzymeB+ in CD8+ T cells. Thus, amiloride is a facilitator for DNA transduction into host cells which in turn enhances the efficiency of the immune responses

    An integrative paradigm to impart quality to correlative science

    Get PDF
    Correlative studies are a primary mechanism through which insights can be obtained about the bioactivity and potential efficacy of candidate therapeutics evaluated in early-stage clinical trials. Accordingly, well designed and performed early-stage correlative studies have the potential to strongly influence further clinical development of candidate therapeutic agents, and correlative data obtained from early stage trials has the potential to provide important guidance on the design and ultimate successful evaluation of products in later stage trials, particularly in the context of emerging clinical trial paradigms such as adaptive trial design

    Biomarkers in T cell therapy clinical trials

    Get PDF
    T cell therapy represents an emerging and promising modality for the treatment of both infectious disease and cancer. Data from recent clinical trials have highlighted the potential for this therapeutic modality to effect potent anti-tumor activity. Biomarkers, operationally defined as biological parameters measured from patients that provide information about treatment impact, play a central role in the development of novel therapeutic agents. In the absence of information about primary clinical endpoints, biomarkers can provide critical insights that allow investigators to guide the clinical development of the candidate product. In the context of cell therapy trials, the definition of biomarkers can be extended to include a description of parameters of the cell product that are important for product bioactivity

    Syntheses and Electronic Properties of Rhodium(III) Complexes Bearing a Redox-Active Ligand

    Get PDF
    A series of rhodium(III) complexes of the redox-active ligand, H(L = bis(4-methyl-2-(1H-pyrazol-1-yl)phenyl)amido), was prepared, and the electronic properties were studied. Thus, heating an ethanol solution of commercial RhCl3·3H2O with H(L) results in the precipitation of insoluble [H(L)]RhCl3, 1. The reaction of a methanol suspension of [H(L)]RhCl3 with NEt4OH causes ligand deprotonation and affords nearly quantitative yields of the soluble, deep-green, title compound (NEt4)[(L)RhCl3]·H2O, 2·H2O. Complex 2·H2O reacts readily with excess pyridine, triethylphosphine, or pyrazine (pyz) to eliminate NEt4Cl and give charge-neutral complexes trans-(L)RhCl2(py), trans-3, trans-(L)RhCl2(PEt3), trans- 4, or trans-(L)RhCl2(pyz), trans-5, where the incoming Lewis base is trans- to the amido nitrogen of the meridionally coordinating ligand. Heating solutions of complexes trans-3 or trans-4 above about 100 °C causes isomerization to the appropriate cis-3 or cis-4. Isomerization of trans-5 occurs at a much lower temperature due to pyrazine dissociation. Cis-3 and cis- 5 could be reconverted to their respective trans- isomers in solution at 35 °C by visible light irradiation. Complexes [(L)Rh(py)2Cl](PF6), 6, [(L)Rh(PPh3)(py)Cl](PF6), 7, [(L)Rh(PEt3)2Cl](PF6), 8, and [(L)RhCl(bipy)](OTf = triflate), 9, were prepared from 2·H2O by using thallium(I) salts as halide abstraction agents and excess Lewis base. It was not possible to prepare dicationic complexes with three unidentate pyridyl or triethylphosphine ligands; however, the reaction between 2, thallium(I) triflate, and the tridentate 4′-(4-methylphenyl)-2,2′:6′,2″-terpyridine (ttpy) afforded a high yield of [(L)Rh(ttpy)]- (OTf)2, 10. The solid state structures of nine new complexes were obtained. The electrochemistry of the various derivatives in CH2Cl2 showed a ligand-based oxidation wave whose potential depended mainly on the charge of the complex, and to a lesser extent on the nature and the geometry of the other supporting ligands. Thus, the oxidation wave for 2 with an anionic complex was found at +0.27 V versus Ag/AgCl in CH2Cl2, while those waves for the charge-neutral complexes 3−5 were found between +0.38 to +0.59 V, where the cis- isomers were about 100 mV more stable toward oxidation than the trans- isomers. The oxidation waves for 6−9 with monocationic complexes occurred in the range +0.74 to 0.81 V while that for 10 with a dicationic complex occurred at +0.91 V. Chemical oxidation of trans-3, cis-3, and 8 afforded crystals of the singly oxidized complexes, [trans- (L)RhCl2(py)](SbCl6), cis-[(L)RhCl2(py)](SbCl4)·2CH2Cl2, and [(L)Rh(PEt3)2Cl](SbCl6)2, respectively. Comparisons of structural and spectroscopic features combined with the results of density functional theory (DFT) calculations between nonoxidized and oxidized forms of the complexes are indicative of the ligand-centered radicals in the oxidized derivatives

    Early and Prolonged Antiretroviral Therapy Is Associated with an HIV-1-Specific T-Cell Profile Comparable to That of Long-Term Non-Progressors

    Get PDF
    Background: Intervention with antiretroviral treatment (ART) and control of viral replication at the time of HIV-1 seroconversion may curtail cumulative immunological damage. We have therefore hypothesized that ART maintenance over a very prolonged period in HIV-1 seroconverters could induce an immuno-virological status similar to that of HIV-1 long-term non-progressors (LTNPs).Methodology/Principal Findings: We have investigated a cohort of 20 HIV-1 seroconverters on long-term ART (LTTS) and compared it to one of 15 LTNPs. Residual viral replication and reservoirs in peripheral blood, as measured by cell-associated HIV-1 RNA and DNA, respectively, were demonstrated to be similarly low in both cohorts. These two virologically matched cohorts were then comprehensively analysed by polychromatic flow cytometry for HIV-1-specific CD4(+) and CD8(+) T-cell functional profile in terms of cytokine production and cytotoxic capacity using IFN-gamma, IL-2, TNF-alpha production and perforin expression, respectively. Comparable levels of highly polyfunctional HIV-1-specific CD4(+) and CD8(+) T-cells were found in LTTS and LTNPs, with low perforin expression on HIV-1-specific CD8+ T-cells, consistent with a polyfunctional/non-cytotoxic profile in a context of low viral burden.Conclusions: Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs, strengthening the recent emphasis on the positive impact of early treatment initiation and paving the way for further interventions to promote virological control after treatment interruption

    Buffered memory: a hypothesis for the maintenance of functional, virus-specific CD8(+) T cells during cytomegalovirus infection.

    Get PDF
    Chronic infections have been a major topic of investigation in recent years, but the mechanisms that dictate whether or not a pathogen is successfully controlled are incompletely understood. Cytomegalovirus (CMV) is a herpesvirus that establishes a persistent infection in the majority of people in the world. Like other herpesviruses, CMV is well controlled by an effective immune response and induces little, if any, pathology in healthy individuals. However, controlling CMV requires continuous immune surveillance, and thus, CMV is a significant cause of morbidity and death in immune-compromised individuals. T cells in particular play an important role in controlling CMV and both CD4(+) and CD8(+) CMV-specific T cells are essential. These virus-specific T cells persist in exceptionally large numbers during the infection, traffic into peripheral tissues and remain functional, making CMV an attractive vaccine vector for driving CMV-like T cell responses against recombinant antigens of choice. However, the mechanisms by which these T cells persist and differentiate while remaining functional are still poorly understood, and we have no means to promote their development in immune-compromised patients at risk for CMV disease. In this review, I will briefly summarize our current knowledge of CMV-specific CD8(+) T cells and propose a mechanism that may explain their maintenance and preservation of function during chronic infection

    Self-antigen–specific CD8+ T cell precursor frequency determines the quality of the antitumor immune response

    Get PDF
    A primary goal of cancer immunotherapy is to improve the naturally occurring, but weak, immune response to tumors. Ineffective responses to cancer vaccines may be caused, in part, by low numbers of self-reactive lymphocytes surviving negative selection. Here, we estimated the frequency of CD8+ T cells recognizing a self-antigen to be <0.0001% (∼1 in 1 million CD8+ T cells), which is so low as to preclude a strong immune response in some mice. Supplementing this repertoire with naive antigen-specific cells increased vaccine-elicited tumor immunity and autoimmunity, but a threshold was reached whereby the transfer of increased numbers of antigen-specific cells impaired functional benefit, most likely because of intraclonal competition in the irradiated host. We show that cells primed at precursor frequencies below this competitive threshold proliferate more, acquire polyfunctionality, and eradicate tumors more effectively. This work demonstrates the functional relevance of CD8+ T cell precursor frequency to tumor immunity and autoimmunity. Transferring optimized numbers of naive tumor-specific T cells, followed by in vivo activation, is a new approach that can be applied to human cancer immunotherapy. Further, precursor frequency as an isolated variable can be exploited to augment efficacy of clinical vaccine strategies designed to activate any antigen-specific CD8+ T cells
    corecore