26 research outputs found

    Robust quantum state engineering through coherent localization in biased-coin quantum walks

    Get PDF
    We address the performance of a coin-biased quantum walk as a generator for non-classical position states of the walker. We exploit a phenomenon of coherent localisation in the position space --- resulting from the choice of small values of the coin parameter and assisted by post-selection --- to engineer large-size coherent superpositions of distinguishable position states of the walker. The protocol that we design appears to be remarkably robust against both the actual value taken by the coin parameter and strong dephasing-like noise acting on the spatial degree of freedom. We finally illustrate a possible linear-optics implementation of our proposal, suitable for both bulk and integrated-optics platforms.Comment: 7 pages, 7 figure

    Experimental Engineering of Arbitrary Qudit States with Discrete-Time Quantum Walks

    Get PDF
    The capability to generate and manipulate quantum states in high-dimensional Hilbert spaces is a crucial step for the development of quantum technologies, from quantum communication to quantum computation. One-dimensional quantum walk dynamics represents a valid tool in the task of engineering arbitrary quantum states. Here we affirm such potential in a linear-optics platform that realizes discrete-time quantum walks in the orbital angular momentum degree of freedom of photons. Different classes of relevant qudit states in a six-dimensional space are prepared and measured, confirming the feasibility of the protocol. Our results represent a further investigation of quantum walk dynamics in photonics platforms, paving the way for the use of such a quantum state-engineering toolbox for a large range of applications

    Evaluation of self-swabbing coupled with a telephone health helpline as an adjunct tool for surveillance of influenza viruses in Ontario

    No full text
    Abstract Background Calls to a telephone health helpline (THHL) have been previously evaluated for the ability to monitor specific syndromes, such as fever and influenza-like-illness or gastrointestinal illness. This method of surveillance has been shown to be highly correlated with traditional surveillance methods, and to have potential for early detection of community-based illness. Self-sampling, or having a person take his/her own nasal swab, has also proven successful as a useful method for obtaining a specimen, which may be used for respiratory virus detection. Methods This study describes a self-swabbing surveillance system mediated by a nurse-led THHL in Ontario whereby syndromic surveillance concepts are used to recruit and monitor participants with influenza-like illness. Once recruited, participants collect a nasal specimen obtained by self-swabbing and submit for testing and laboratory confirmation. Enumeration of weekly case counts was used to evaluate the timeliness of the self-swabbing surveillance system through comparison to other respiratory virus and influenza surveillance systems in Ontario. The operational efficiency of the system was also evaluated. Results The mean and median number of days between the day that a participant called the THHL, to the day a package was received at the laboratory for testing were approximately 10.4 and 8.6 days, respectively. The time between self-swab collection and package reception was 4.9 days on average, with a median of 4 days. The self-swabbing surveillance system adequately captured the 2014 influenza B season in a timely manner when compared to other Ontario-based sources of influenza surveillance data from the same year; however, the emergence of influenza B was not detected any earlier than with these other surveillance systems. Influenza A surveillance was also evaluated. Using the THHL self-swabbing system, a peak in the number of cases for influenza A was observed approximately one week after or during the same week as that reported by the other surveillance systems. Conclusion This one-year pilot study suggests that the THHL self-swabbing surveillance system has significant potential as an adjunct tool for the surveillance of influenza viruses in Ontario. Recommendations for improving system efficacy are discussed

    Quantum state engineering using one-dimensional discrete-time quantum walks

    No full text
    Quantum state preparation in high-dimensional systems is an essential requirement for many quantum-technology applications. The engineering of an arbitrary quantum state is, however, typically strongly dependent on the experimental platform chosen for implementation, and a general framework is still missing. Here we show that coined quantum walks on a line, which represent a framework general enough to encompass a variety of different platforms, can be used for quantum state engineering of arbitrary superpositions of the walker's sites. We achieve this goal by identifying a set of conditions that fully characterize the reachable states in the space comprising walker and coin and providing a method to efficiently compute the corresponding set of coin parameters. We assess the feasibility of our proposal by identifying a linear optics experiment based on photonic orbital angular momentum technology
    corecore