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Abstract
We address the performance of a coin-biased quantum walk as a generator for
non-classical position states of the walker. We exploit a phenomenon of coherent
localization in the position space - resulting from the choice of small values of the
coin parameter and assisted by post-selection - to engineer large-size coherent
superpositions of position states of the walker. The protocol that we design appears
to be remarkably robust against both the actual value taken by the coin parameter
and strong dephasing-like noise acting on the spatial degree of freedom. We finally
illustrate a possible linear-optics implementation of our proposal, suitable for both
bulk and integrated-optics platforms.

Quantum walks, which generalize the well-known concept of random walks to the quan-
tum domain, have recently attracted considerable attention in light of the possibility that
they offer the capability to explore non-trivial phenomena in statistical mechanics [1],
such as interference [2], localization [3–6] and tunnelling, and are able to establish en-
tanglement among either the different degrees of freedom of a walker, or the parties of a
multi-walker setting [7–13]. Quantum walk-based architectures for quantum computa-
tion have been proposed and theoretically explored [14], while the possibility to imple-
ment quantum simulation through schemes based on the dynamics of a quantum walker
are currently being pursued both theoretically and experimentally.

In the last few years, the number of experimental validations of the quantum walk
paradigm, and investigations towards its use for the coherent manipulation of information
at the quantum mechanical level have flourished [15–29]. This therefore paves the way to
the full exploitation of the possibilities offered by quantum walks for quantum state engi-
neering in Hilbert spaces of large dimensions, which is in general a difficult task to pursue
experimentally.

In this paper, we explore exactly such a possibility and exploit the statistical features of a
discrete-time quantum walk to engineer non-classical states of an N-dimensional system.
Specifically, we make use of special coherent localization effects induced on the position
state of a quantum walker by choosing properly the operation describing the tossing of
a coin. We demonstrate that high-quality coherent superpositions of fully position states
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of the walker can be arranged through this mechanism and simple post-processing op-
erations. As the focus of our investigation is on quantum state engineering, we consider
explicitly the finite-N case, and will not address explicitly the (undoubtedly relevant) scal-
ing laws of the features that we discuss with the size of the walker space.

We also assess the robustness of our scheme against improper choices of the coin oper-
ation, showing that the scheme remains effective in a broad range of possible choices for
such a transformation. Remarkably, such robustness extends to the effects of a dephasing
environment that projects the state of the walker onto position states with no quantum
coherence. Finally, we assess the experimental observability of the effects that we predict,
showing that both bulk- and integrated-optics settings are suitable for such scope.

The remainder of this paper is organised as follows: Section 1 illustrates the basic fea-
tures of the quantum walk at hand and present the effects induced by the use of a so-called
Pauli Ẑ operator. This will be sufficient to provide an intuition of the physical influences
that low-parameter coin operations have on the statistical features of the walk. Section 2
discusses the effects that deviations from the ideal conditions stated in Section 1 have on
the features of the walk, and how postselection aids in generating superposition states of
the walker’s position. Section 3 discusses the case of a special preparation of the walker,
and how this results in a quantum coherent superposition of spatial distributions, while
Section 4 illustrates a possible experimental implementation encompassing the features
at the core of our analysis. Finally, Section 5 presents our conclusion.

1 Quantum walk with SU(2) coin operation
The one-dimensional discrete-time quantum walk (DTQW) entails a ‘walker’ endowed
with two distinct degrees of freedom: a spatial one, which we dub ‘position’, and an internal
one, which embodies the ‘coin’ that is tossed to decide the direction of the movement of
the walker. The position state refers to where the walker is, in relation to the centre of the
line on which it is moving. In the case of a linear walk and a dichotomic coin, the basis
of the Hilbert space for such degrees of freedom are Hp : {|n〉p; n ∈ Z} and Hc : {|0〉c, |1〉c},
respectively.

Each step of the evolution comprises a coin-tossing operation and a position shift. The
first can be formally described using the unitary coin transformation

Ĉc(θ ) = cos θ Ẑc + sin θ X̂c (1)

with X̂, Ŷ , Ẑ the x, y, z Pauli spin operator acting in Hc. Although this is not the most gen-
eral form of coin operation that can be devised, it captures the essence of the features that
we aim at addressing in this work. Typically, the Hadamard coin Ĉc(π/4) is used, which
yields equal probabilities for the walker to move leftward or rightward [30]. The shift op-
erator P̂p acts on the position of the walker by displacing it conditionally on the state of
the coin. We thus consider the joint operation as

Ŝ = exp[iP̂p ⊗ Ẑc]

=
∑

n

[|n + 1〉〈n|p ⊗ |0〉〈0|c + |n – 1〉〈n|p ⊗ |1〉〈1|c
]
. (2)

We adopt a description based on density matrices right from this point, where ρ̂pc(t) is
the joint state of walker and coin at the discrete time t of their evolution. With the notation
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introduced above we have

ρ̂pc(t) =
[
Ŝ Ĉc(θ )

]
ρ̂pc(t – 1)

[
Ŝ Ĉc(θ )

]†. (3)

Unless otherwise specified, it is intended that at the end of the walk the coin is traced out
to leave room for an analysis of the statistical properties of the spatial degree of freedom.
In this context, a key quantity in the study of quantum walk dynamics is the probability
P(n) = p〈n|Trc[ρ̂pc(t)]|n〉p that position n in the position space is occupied at the discrete
time t.

The one-dimensional DTQW with a Hadamard coin (dubbed here a Hadamard walk)
has been the focus of extensive research activities both at the theoretical and experimental
level [1, 31]. The most striking feature of a Hadamard walk is the quadratic growth of the
variance of the walk with the size of the lattice, a property that makes the DTQW very
useful for the design of faster-than-classical search algorithms.

On the contrary, walks with θ �= π/4 (thus resulting in unequal chances for the walker
to move leftward and rightward) have received only limited attention [30]. Yet, interesting
features emerge from considering biased coin operations. Most noticeably, for an N-step
DTQW achieved using Ĉc(θ ), the variance of the walk has been shown to vary as [30]

σ 2
θ ∼ (1 – sin θ )N2, (4)

which, for θ ∈ [0,π/4), is larger than that of a Hadamard walk. Notice that the initial state
considered in Ref. [30] is the factorized pure state

ρ̂pc(0) = |0〉〈0|p ⊗ |φ〉〈φ|c, (5)

with |φ〉c = 1√
2 (|0〉 + i|1〉)c.

Our goal is to further explore the features of a low-θ walk to see what properties of
the walk depend on this choice of coin operation, and the extent of the control that can
be operated on the walk through the tuning of such operation. The behaviour for low-
θ described by Eq. (4) can be intuitively understood considering the limit case of θ = 0,
corresponding to a Pauli Ẑc coin operation. For a generic initial pure state of the walker
|ψ0〉p, the state of the system after t steps reads

∣∣�(t)
〉
pc =

1√
2
[|ψ–t〉p|0〉c + i(–1)t|ψ+t〉p|1〉c

]
, (6)

where the walker states |ψ±t〉p are defined as the initial state |ψ0〉p displaced by ±t steps
in the position space Hp

|ψ±t〉p =
∑

n
|n ± t〉p〈n|ψ0〉p. (7)

If the initial state has support over a finite M of sites, then the state in Eq. (6) is maximally
entangled between the coin and the walker for any t > 	M/2
, regardless of the specific
shape of the initial wave function. The state of the walker is rigidly displaced towards the
extremes ofHp. Therefore, if the initial state |ψ0〉p is localised in the position state, we have
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Figure 1 (a)-(d): Probability distributions for the
DTQW with initial state |0〉p ⊗ |φ〉c [with |φ〉c as
in Eq. (5)] for varying coin parameter θ and N
= 100 steps. As θ decreases, the walk spreads much
wider on the lattice, thus enabling the walker to visit
more sites on the line. For θ = π /20 the walker
manages to spread to all the sites on the line,
reaching the end-site on the end-lattice positions
|–100〉p and |100〉p . Moreover, the probability to
occupy sites different from the end ones is strongly
reduced, thus manifesting a pronounced coherent
localization effect of the walker. (e): Shown is the
value of θ needed for the probability of the walker
being at the end site of the lattice to be double (top
line), triple (middle line) and four times (bottom line)
the probability of being at the previous site. As the
number of sites in the lattice increases, the critical
value of θ needed to reach the end site decreases.
Note that we compare the probability of being at
end sites ±N with the probability of being at site
±N∓ 2. This is due to the action of the shift operator, which allows us to fill only odd or even positions,
depending on how many steps the walker takes. When the evolution occurs over an even number of steps,
the walker can only occupy even sites on the lattice. Therefore, P(N± 1) will always equal 0.

a coherent superposition of two states localized towards the opposite ends of the walker
line. In addition, the absence of quantum interference in the position space explains the
larger variance of the Ẑc-walk with respect to the Hadamard walk, as per Eq. (4).

2 Deviations from an ideal Ẑp-walk
Given the behaviour just described, a natural question arises: are the main features of the
Ẑc-walk - namely, the generation of maximal entanglement and large variance - robust
against imperfections? Here we will focus on two main sources of imperfections. First, we
will consider the case in which the coin parameter θ is different from zero. Second, we will
take into account the detrimental effect of noise on the walk.

2.1 Robustness to small θ deviations
We first look at the ideal scenario corresponding to the full absence of noise and arbitrary
θ , in order to gain insight into the phenomenology of the walk. Considering the initial
state in Eq. (5), Figure 1 shows the probability distribution P(n) of finding the walker at
the nth site of a lattice after N = 100 steps when the coin parameter is increased.

The effects of such variations on the probability distribution of the walk are significant:
As θ increases from π/4, the spread of the walk decreases, while a decrease of θ from the
value corresponding to a Hadamard walk results in the walker being able to spread faster
and visit more sites of the lattice, in line with Ref. [30]. Remarkably, for small values of the
coin parameter, the walker manages to explore all the sites on the line, with the lobes of the
probability distribution reaching the opposite ends of the position space [cf. Figure 1(d)].
Similarly to what is observed for the ideal Ẑc-walk, there is a strong modification of the
interference mechanism responsible for the features of a quantum walk. This results in a
significant reduction of the probability for the walker to occupy sites on the lattice that are
different from those close to the end of the position space. A closer look reveals that a small
value of the coin parameter effectively localizes the walker around n = ±N in a coherent
way (the underlying dynamics of the walker is fully unitary, at this stage), although the
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Figure 2 (a) We plot the state fidelity maxs maxk
F (N) evaluated over the target state (|–N + k〉p

+ s|N – k〉p)/
√

2 (with s = ±1, k = 0, 1, 2, 3) and
the position state of the walker after N = 10
(magenta, top curve), N = 30 (green, second
curve), N = 50 (blue, third curve) and N = 100
(red, bottom curve) steps, plotted against the
coin parameter θ . The initial
monotonically decreasing trait of each curve corresponds to the fidelity with the state with k = 0. The first
ripple is for k = 1, and so on. (b) Same as panel (a) but for the conditional state of the walker achieved by
projecting the coin onto its initial state. Despite the similarity between the curves shown in panel (a) and (b),
they are not related by a scaling factor: the ratio between one of the curves in panel (b) and the
corresponding one in panel (a) is a non-constant function of both N and θ .

probability for the walker to occupy exactly such end sites appears to depend on the size
of the position space itself.

In order to characterize this feature, we use the state fidelity [32]

F (N) = p
〈
T(l)

∣∣ρ̂p(N)
∣∣T(l)

〉
p (8)

between the reduced state of the walker ρ̂p(N) = Trc[ρ̂pc(N)] and a chosen target state of
the form |T(l)〉p = (|+l〉p + s|–l〉p)/

√
2 (with s = ±1 and l ∈ N). As θ grows, we find that

the fidelity with |T(l)〉 improves by considering decreasing values of l. This is shown in
Figure 2(a), where we have taken the target states |T(N – k)〉p (for k = 0, 1, 2, . . . ) and plot-
ted maxs maxk F (N) against the value taken by the coin parameter and for growing sizes
of the the position space. We consider these superposition states for comparison with the
projected case and on the basis of the insight given by the analytical solution for θ = 0, see
Eq. (6). While the fidelity with the state with k = 0 decreases as the coin parameter grows,
the state of the position degree of freedom becomes close to coherent superposition states
with growing values of k, as witnessed by the ripples displayed in Figure 2(a).

Notice that, in the case of a Ẑc-walk, the walker-coin entanglement and the rigid trans-
lation of the initial state towards the extremes of the walker line implies a final walker state
ρ̂p(N) = 1

2 (|N〉〈N | + |–N〉〈–N |). The latter has a fidelity F = 1/2 for k = 0 independently
of N which explains the low fidelity of Figure 2(a). We can see that, in case of low θ , the
residual entanglement established between coin and position of the walker prevents the
state of the walker from exhibiting strong coherences between |N – k〉 and |–N + k〉. The
absence of such coherences is the factor limiting the values taken by the fidelity studied in
Figure 2(a). The situation can be significantly modified if we slightly change our approach
to the determination of the position state of the walker: rather than tracing out the coin
after the N-step walk, we projectively measure the coin state in the basis determined by
{|φ〉c, |φ⊥〉c ≡ 1√

2 (i|0〉 + |1〉)c}. That is, we consider the conditional position state

ρ̂ j
p(N) =

Trc[	̂j
cρ̂pc(N)	̂j

c]
Tr[	̂j

cρ̂pc(N)]
, (9)

where j = 0, 1 and 	̂0
c ≡ |φ〉〈φ|c and 	̂1

c ≡ |φ⊥〉〈φ⊥|c. Notice that in the case of a Ẑc-walk,
one has

ρ̂ j
p(N) = τ j

p(N) ≡ 1
2
[|–N〉〈–N |p + |N〉〈N |p + sN+j(|N〉〈–N |p + h.c.

)]
, (10)
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Figure 3 (a) State fidelity between the position state of the walker at the end of a 2N + 1-site walk
(obtained by tracing away the coin’s degrees of freedom) with θ = π /40 (initial state |0〉p ⊗ |φ〉c) and
a coherent superposition states of the form (|–N + k〉 ± |N – k〉)/

√
2. We have considered the cases of

k = 0 (blue, top curve), k = 1 (red, middle curve), and k = 2 (green, bottom curve). (b) Same as panel (a) but for
θ = π /100. (c) and (d) Same analysis as in panels (a) and (b), respectively, but for a conditional position state
achieved by projecting the coin onto |φ〉c at the end of the walk.

which shows strong coherences in the position basis. Here τ
j
p(N) = |T(N)〉〈T(N)|p is the

density matrix of a walker prepared in a superposition over the end sites of the lattice.
This feature is preserved for the case of low θ , as demonstrated in Figure 2(b), where the
fidelity maxs maxk F (N) with the target states τ

j
p(N – k) (where k = 1, 2, 3, . . .) is substan-

tially larger than the corresponding one for the unconditional state over the whole range
of lattice size that we have considered. The analysis at set size of the position space and
changing θ presented above is completed by the complementary study against the size of
the walker space showcased in Figure 3(a)-(d). Figure 2(b), Figures 3(c)-(d), and Eqs. (9)
and (10), showing that the high level of walker-coin entanglement determines coherent
superpositions of localised states - implying that the main features of the Ẑc-walk are re-
tained also for small deviations of the coin parameter from θ = 0.

2.2 Robustness to dephasing noise
The striking differences between the probability distribution for small-θ DTQW and the
one associated with a Hadamard walk persist under the influences of relevant forms of
noise on the walk itself. In light of the transport-like nature of the DTQW mechanism,
and the core role played by interference in the establishment of this salient feature, it is
appropriate to focus on a dephasing-like channel �t

p[ρ̂pc(t)] affecting the position degree
of freedom only and that transforms the state ρ̂pc(t) of the walker at time t into

ρ̂pc(t) → �t
p
[
ρ̂pc(t)

]
= βtρ̂pc(t) + (1 – βt)

N∑

k=–N

|k〉〈k|p ⊗ ̂k
c (t), (11)

where βt ∈ [δ, 1] is a discrete time-dependent noise parameter, whose value we chose ran-
domly at every step of the walk, and ̂k

c (t) = 〈k|ρ̂pc(t)|k〉 are operators in Hc. Here, δ ∈ [0, 1]
determines the range of probabilities within which βt is chosen at a given step of the evo-
lution. We choose βt to be a random variable to ensure our theory and results are more
consistent with what we would recover in an experimental setting. It is unlikely that there
would be a constant, fixed value for the amount of noise within an experiment. Most likely
it will fluctuate within a range, which we allow for by our choice of βt . In what follows, we
will refer to the amplitude f = 1 – δ of such range as the noise amplitude. Therefore, at step
t (with probability βt) the mechanism that we consider leaves the state of the walker un-
affected. With a complementary chance it renders it an incoherent admixture of position
states, thus erasing any previously set spatial coherence. The dynamics of the walker thus
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proceeds as follows

ρ̂pc(t) = �t
p
[(

Ŝ Ĉc(θ )
)
ρ̂pc(t – 1)

(
Ŝ Ĉc(θ )

)†]. (12)

By varying the range within which the values of the set {βt} are taken, we go from the ideal
case with no noise, to the maximum noise interval with substantial dephasing effects.

Previous investigations focused on the Hadamard walk have shown that, in the presence
of maximum noise, the distribution P(n) tends to the Gaussian distribution for a classical
walk [33]. On the other hand, small amounts of noise have been shown to be beneficial
for the spreading of the walker’s distribution, thus demonstrating dephasing assisted-like
walk [34]. Here we aim at exploring the resilience of the localization effect observed at
small values of θ when the walk is affected as in Eq. (12).

It is instructive to first consider analytically the behaviour of a Ẑc-walk in the presence of
full dephasing noise, where βt is a constant rather than a random variable (i.e., θ = βt = 0).
Considering a generic initial pure state for the walker |ψ0〉p, a straightforward calculation
shows that after t steps the state of the system is given by

ρ̂pc(t) =
1
2
[
ψ̂–t ⊗ |0〉〈0|c + ψ̂t ⊗ |1〉〈1|c

]
. (13)

In the equation above we have defined the following displaced states of the initial walker
state, devoid of all its coherences

ψ̂±t ≡
N∑

k=–N

∣∣〈k|ψ0〉
∣∣2|k ± t〉〈k ± t|p. (14)

Eq. (13) is the incoherent counterpart of Eq. (6) and it shows that, in the presence of full
dephasing noise, the system evolves towards an incoherent mixture of the two rigid trans-
lations of the walker initial state (devoid of all its coherences). If the initial state is localised
in position, we thus have an incoherent mixture of two localised states. Evidently, this is
at odds with the behaviour of the Hadamard walk in the presence of full noise, which
is instead characterised by a Gaussian like distribution in position. The reason for this
discrepancy is that, in the Ẑc-walk, the coin acts de facto as a label that allows to rigidly
translate the initial state of the walker towards the opposite ends of the position space, just
as we have seen also for the ideal case of Eq. (6). Both cases are then characterized by a
localization effect at the extremes of the position space.

Focussing now on the case of intermediate noise and arbitrary coin parameter θ , Figure 4
summarises the findings of our investigation. For θ ≥ π/4, increasing noise strengths drive
P(n) towards a Gaussian-like distribution that is reminiscent of classical walks. In contrast
with this, the localization resulting from the use of small coin parameters survives to arbi-
trary dephasing strengths, albeit enhancing the probability to find the walker at positions
far from the end-lattice ones with respect to the Ẑc-walk (Figure 4 only shows a specific
instance that does not affect the generality of our conclusions).

3 Quenched spreading of DTQW with a small coin parameter
The localization features discussed in the previous sections can be used for the sake of
preparing interesting position states of the walker, or to preserve them from the natural
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Figure 4 Panels (a)-(c): Probability distributions for the DTQW with initial walker state |0〉p ⊗ |φ〉c for
N = 100, θ = 2π /5 and a growing noise amplitude. We have taken f = 0.05 in panel (a), f = 0.5 in panel (b),
and f = 1 in panel (c). Panels (d)-(f): Same as above but for θ = π /4, thus implementing a Hadamard walk.
Panels (g)-(i): Same as above but for θ = π /20. In each case we have obtained these results by averaging over
100 realizations of the noise-affected walk.

Figure 5 (a) Probability distributions P(n) against the site label n for a DTQW with N = 50 and the
walker prepared in the initial state |G〉p ⊗ |φ〉c with � = 10. (b) State fidelity between a Gaussian
coherent quantum superposition state of the form in Eq. (16) and the conditional state of the position degree
of freedom of a walker initially prepared in Eq. (15) with � = 2 and a growing size N of the lattice. (c)
Comparison between the spatial probability distributions for a quantum walk with θ = π /20 in the absence of
noise (blue line, top peaks) and one achieved by taking {βt} ∈ [0.9, 1] (magenta line, bottom peaks). The
fidelity between the corresponding states is as low as 0.22.

dispersion entailed by the walk. Specifically, we first show that the small-coin parameter
walk is able to filter high-quality coherent superposition states from specific initial posi-
tion states of the walker.

We start assessing the performance of a walker prepared in superpositions of spatial
states. In this section we will see the quantum random walk whose initial position state is a
superposition over the Gaussian and uniform distributions. For the Gaussian distribution,
the initial position state is

|G〉p = NG
∑

n
e– n2

4�2 |n〉p, (15)

where NG is the normalisation constant and � is the standard deviation of the Gaussian.
Figure 5(a) shows the probability distributions for � = 10 and θ = π/20, which is chosen
here for convenience and clarity of presentation of the results.
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Quite clearly, two Gaussian peak appear, both of standard deviation �, separated
roughly by 2N . These features should be taken as canonical and valid for other choices
of the coin parameter and lattice size. As for the case of a walker starting from the origin
of the lattice, though, the distribution P(n) thus found is actually associated with a state
that is virtually deprived of coherences. A close inspection of the density matrix of the po-
sition degree of freedom only, in fact, reveals the virtual absence of off-diagonal elements.
As done in the case of a walk starting from the origin of the lattice, we can enhance the
quantum coherence in the position state of the system by projecting the coin onto |φ〉c.
This delivers a state that is very close to the quantum coherent superposition of spatial
Gaussian distributions as

|T〉p =
1√
2

∑

n

[
N+e– (n–N/2)2

4�2 + N–e– (n+N/2)2
4�2

]|n〉p. (16)

Using again state fidelity as a figure of merit for the closeness of the walker’s position state
to |T〉p, we find the results reported in Figure 5(b), which demonstrate the very high quality
of the conditional state within quite a large range of lattice sizes. Fidelity remains above
92% for N � 80, a result that appears to be only very weakly affected by an increase in the
variance of the initial Gaussian distribution.

On the other hand, the addition of dephasing noise strongly affects the features of the
conditional position states. In Figure 5(c) we see that already for {βt} ∈ [0.9, 1], the fidelity
between the noiseless conditional state and the corresponding noise-affected one drops
to � 0.22.

4 Experimental proposal
Here we present a brief description of a set up that can be used to implement a quantum
walk scheme able to generate the sort of coherent state superpositions addressed in our
analysis so far. In Figure 6(a) we show the optical spatial representation for a 1D DTQW.
In this implementation, the coin is embedded into the walker’s degree of freedom, which
is embodied by the position of a light pulse, going through a multi-layer interferometer, on
a detection line. The walker performs the first step by impinging on a beam splitter with a
set reflectivity θ . This effectively implements the coin-tossing operation, and prepares the
coin state. The light beam is thus split into a superposition of directions, conditionally on
such a coin operation.

In order to reproduce the DTQW evolution with initial state ρ̂pc(0) in Eq. (5), we propose
the following approach: a first coin operation is implemented to generate the state |φ〉c.
This can be done through a 50 : 50 beam splitter (i.e. we set the reflectivity ratio θ = π/4).
The outputs are then recombined to enter the first beam splitter of the walk [step 0 in Fig-
ure 6(a)]. This is followed by the DTQW optical scheme, as in Figure 6(a), where the beam
splitters implementing the necessary series of coin tossing operations have a set reflectiv-
ity ratio of θ � 1. The process continues up to step N [cf. Figure 6(b)]. In order to project
on the initial coin state, after the final step, we project over the initial coin state inserting
another row of beam splitters with θ = π/4 and detecting on the output corresponding to

1√
2 (|0〉 + i|1〉).
In this context, an experimental test of the resilience of the localization phenomenon

highlighted in this work can be performed by simulating dephasing noise on the position
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Figure 6 (a) Beams propagating through a
regular grid of beam splitters achieve a walk
with spatial encoding. The powers of beams
emerging from a grid of depth N correspond to
the probability distribution of the walker and
coin (encoded in beam location and direction,
respectively) after a walk of N steps. (b) Optical
scheme for the generation of robust coherent
superpositions of position states of the walker. The
scheme consists of the preparation of the initial coin
state |φ〉c = 1√

2
(|0〉 + i|1〉) through a beam splitter at

θ = π /4 where the output arms are then recombined to allow the walker to start the walk from position 0.
The evolution is then performed with a biased coin, beam splitters with transmission ratio θ , and a detection
stage. The latter projects the coin onto a desired state through an array of beam splitters at θ = π /4 and
collecting the output from one side of arms. The phases φn,k where n is the step and k the sub-step index,
indicate how noise can be inserted in the system.

degree of freedom of the walk, which can be effectively implemented by inserting random
phases φn,k between the beam splitters of consecutive walk steps. Here n is the step index
and k the index of the modes into which the walker is split at a given step of the walk. The
strength of such noise will be related to the rate with which we pick each phase between
values (0; 2π ] instead of choosing 0.

A possible platform of the implementation of this scheme is provided by integrated opti-
cal waveguide technology [3–6], where beam splitting operations are realised by optically
writing on a chip a set of mode couplers, whose mixing ratio (equivalent to our coin param-
eter), can be chosen during the writing process. The main limitation of this architecture
is the strength of losses experienced by a photonic signal propagating through. However,
Ref. [35] shows that integrated photonic architectures affected by standard fabrication and
and propagation losses would allow for as many steps of a walk-like dynamics as 32 with
only insignificant effects on the quality of the output walker state. The degree of reconfig-
urability of the large integrated-waveguides arrays is currently very limited, which would
put some constraints to the possibility of simulating the effects of noise.

A potential way around such limitations is provided by fiber-integrated setups exploiting
time-multiplexing approaches. In this configuration, the encoding of the walker is done ex-
ploiting the temporal degree of freedom and the coin using polarisation or path degrees of
freedom of optical signals. The conditional shift of the walker over the position space can
be mapped into earlier and later arrival time given by two different path lengths [28, 29].
This might be realized using coupled loop cavities of different radius, such as in Ref. [36].
This approach would also be suitable for a dynamically variable phase to simulate noise
in the system, enjoys more flexibility than integrated-waveguides settings, offering a po-
tentially fruitful ground for the simulation of the noise effects addressed here, where av-
eraging over many noise patterns would be needed. In order to project over the initial
coin state either the last coin operation can be dynamically tuned back to θ = π/4 via an
electro-optical modulator (EOM) or the outputs can interfere over a beam splitter with
θ = π/4. The output will consist of a sequence of pulses in time-bins given by the size of
the loops; the detection can be achieved through a single-photon avalanche diode with a
time-to-digital converter that records the detection time relative to the initial pulse gen-
eration. The low losses in such a fibre implementation (Ref. [36] reports a high-fidelity
quantum walk of up to 62 steps) would allow for the preparation of a superposition state
of the form at the core of our study after 20-30 steps evolution.
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Finally, we point out that Ref. [37] provides an exact, analytical methodology for the
preparation of arbitrary states of a quantum walker through only passive linear-optics
transformation. This would thus provide the way to engineer initial states of the walker
such as the one in Eq. (15).

5 Conclusions
We have highlighted a phenomenon of coherent localization of the position of a quan-
tum walker in its position space taking place when the parameter of the coin operation is
chosen to be small. Such effect, which is a consequence of the enhanced variance of the
quantum walk distribution resulting from the use of a small coin parameter [30] turns out
to be a remarkably efficient way to postselect important types of non-classical states. Our
scheme offers features of robustness against the range of choices of the coin parameters,
and the dephasing noise that might affect the position degree of freedom, while being suit-
able for agile experimental implementations in state-of-the-art linear optics experiments.
Our study paves the way to the investigation of quantum state engineering based on the
exploitation of the statistics of quantum walk processes, and reinforces the versatility of
such mechanisms for low-control coherent operations on systems spanning naturally large
Hilbert spaces.

Note added - While completing this work, we became aware of the work by W.-W. Zhang
et al., where the absence of dispersion for delocalised initial states is used to engineer
coherent superpositions of position states [38].
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