39 research outputs found

    Modulation of Colorectal Cancer Risk by Polymorphisms in 51Gln/His, 64Ile/Val, and 148Asp/Glu of APEX Gene; 23Gly/Ala of XPA Gene; and 689Ser/Arg of ERCC4 Gene

    Get PDF
    Polymorphisms in DNA repair genes may affect the activity of the BER (base excision repair) and NER (nucleotide excision repair) systems. Using DNA isolated from blood taken from patients (n = 312) and a control group (n = 320) with CRC, we have analyzed the polymorphisms of selected DNA repair genes and we have demonstrated that genotypes 51Gln/His and 148Asp/Glu of APEX gene and 23Gly/Ala of XPA gene may increase the risk of colorectal cancer. At the same time analyzing the gene-gene interactions, we suggest the thesis that the main factor to be considered when analyzing the impact of polymorphisms on the risk of malignant transformation should be intergenic interactions. Moreover, we are suggesting that some polymorphisms may have impact not only on the malignant transformation but also on the stage of the tumor

    Polymorphisms of the dna base excision repair gene mutyh in head and neck cancer

    No full text
    Background: Head and neck squamous cell carcinomas (HNSCC) comprise about 6% of all malignant neoplasms. The major risk factors of HNSCC are smoking and alcohol consumption. Genetic polymorphisms of DNA repair enzymes may lead to genetic instability and carcinogenesis. MUTYH gene encodes a DNA glycosylase that can initiate the base excision repair (BER) pathway and prevent G:C > T:A transversion by excising adenine mispaired with 8-hydroxyguanine produced by reactive oxygen species (ROS). Aim: to perform a case-control study to test the association between polymorphism in the MUTYH gene: Tyr165Cys and head and neck cancer risk progression. Methods: Genotypes were determined in DNA from peripheral blood lymphocytes of 193 patients (among them 97 subjects with precancerous hyperplastic laryngeal lesions and 96 subjects with head and neck cancer) and 140 age, sex and ethnic-matched cancer-free controls by tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR). Results: We found an association between head and neck cancer risk and the Tyr165Tyr variant of the MUTYH gene (OR 2.18; 95% CI 1.19–3.97). For Tyr165Tyr genotype we also observed positive correlation with cancer progression assessed by tumor size (OR 4.56; 95% CI 1.60–12.95). We did not observe any correlation between Tyr165Cys polymorphism of MUTYHgene and precancerous hyperplastic laryngeal lesions risk. Conclusion: The Tyr165Tyr polymorphic variant of the MUTYHgene may be associated with head and neck cancer in Polish population

    Non-homologous DNA end joining in normal and cancer cells and its dependence on break structures

    Get PDF
    DNA double-strand breaks (DSBs) are a serious threat to the cell, for if not or miss-repaired, they can lead to chromosomal aberration, mutation and cancer. DSBs in human cells are repaired via non-homologous DNA end joining (NHEJ) and homologous recombination repair pathways. In the former process, the structure of DNA termini plays an important role, as does the genetic constitution of the cells, through being different in normal and pathological cells. In order to investigate the dependence of NHEJ on DSB structure in normal and cancer cells, we used linearized plasmids with various, complementary or non-complementary, single-stranded or blunt DNA termini, as well as whole-cell extract isolated from normal human lymphocytes, chronic myeloid leukemia K562 cells and lung cancer A549 cells. We observed a pronounced variability in the efficacy of NHEJ reaction depending on the type of ends. Plasmids with complementary and blunt termini were more efficiently repaired than the substrate with 3' protruding single-strand ends. The hierarchy of the effectiveness of NHEJ was on average, from the most effective to the least, A549/ normal lymphocytes/ K562. Our results suggest that the genetic constitution of the cells together with the substrate terminal structure may contribute to the efficacy of the NHEJ reaction. This should be taken into account on considering its applicability in cancer chemo- or radiotherapy by pharmacologically modulating NHEJ cellular responses

    Angiogenesis Markers Quantification in Breast Cancer and Their Correlation with Clinicopathological Prognostic Variables

    Get PDF
    Tumoural angiogenesis is essential for the growth and spread of breast cancer cells. Therefore the aim of this study was to assess the diagnostic performance of angiogenesis markers in tumours and there reflecting levels in serum of breast cancer patients. Angiogenin, Ang2, fibroblast growth factor basic, intercellular adhesion molecule (ICAM)-1, keratinocyte growth factor (KGF), platelet-derived growth factor-BB, and VEGF-A were measured using a FASTQuant angiogenic growth factor multiplex protein assay. We observed that breast cancer tumours exhibited high levels of PDGF-BB, bFGF and VEGF, and extremely high levels of TIMP-1 and Ang-2, whereas in serum we found significantly higher levels of Ang-2, PDGF-BB, bFGF, ICAM-1 and VEGF in patients with breast cancer compared to the benign breast diseases patients. Moreover, some of these angiogenesis markers evaluated in tumour and serum of breast cancer patients exhibited association with standard clinical parameters, ER status as well as MVD of tumours. Angiogenesis markers play important roles in tumour growth, invasion and metastasis. Our results suggest that analysis of angiogenesis markers in tumour and serum of breast cancer patients using multiplex protein assay can improve diagnosis and prognosis in this diseases

    Modulation of Colorectal Cancer Risk by Polymorphisms in 51Gln/His, 64Ile/Val, and 148Asp/Glu of APEX Gene; 23Gly/Ala of XPA Gene; and 689Ser/Arg of ERCC4 Gene

    No full text
    Polymorphisms in DNA repair genes may affect the activity of the BER (base excision repair) and NER (nucleotide excision repair) systems. Using DNA isolated from blood taken from patients (n=312) and a control group (n=320) with CRC, we have analyzed the polymorphisms of selected DNA repair genes and we have demonstrated that genotypes 51Gln/His and 148Asp/Glu of APEX gene and 23Gly/Ala of XPA gene may increase the risk of colorectal cancer. At the same time analyzing the gene-gene interactions, we suggest the thesis that the main factor to be considered when analyzing the impact of polymorphisms on the risk of malignant transformation should be intergenic interactions. Moreover, we are suggesting that some polymorphisms may have impact not only on the malignant transformation but also on the stage of the tumor

    Efficiency of Base Excision Repair of Oxidative DNA Damage and Its Impact on the Risk of Colorectal Cancer in the Polish Population

    Get PDF
    DNA oxidative lesions are widely considered as a potential risk factor for colorectal cancer development. The aim of this work was to determine the role of the efficiency of base excision repair, both in lymphocytes and in epithelial tissue, in patients with CRC and healthy subjects. SNPs were identified within genes responsible for steps following glycosylase action in BER, and patients and healthy subjects were genotyped. A radioisotopic BER assay was used for assessing repair efficiency and TaqMan for genotyping. Decreased BER activity was observed in lymphocyte extract from CRC patients and in cancer tissue extract, compared to healthy subjects. In addition, polymorphisms of EXO1, LIG3, and PolB may modulate the risk of colorectal cancer by decreasing (PolB) or increasing (LIG3 and EXO1) the chance of malignant transformation
    corecore