18 research outputs found
Shape in an Atom of Space: Exploring quantum geometry phenomenology
A phenomenology for the deep spatial geometry of loop quantum gravity is
introduced. In the context of a simple model, an atom of space, it is shown how
purely combinatorial structures can affect observations. The angle operator is
used to develop a model of angular corrections to local, continuum flat-space
3-geometries. The physical effects involve neither breaking of local Lorentz
invariance nor Planck scale suppression, but rather reply on only the
combinatorics of SU(2) recoupling. Bhabha scattering is discussed as an example
of how the effects might be observationally accessible.Comment: 14 pages, 7 figures; v2 references adde
Properties of the Volume Operator in Loop Quantum Gravity I: Results
We analyze the spectral properties of the volume operator of Ashtekar and
Lewandowski in Loop Quantum Gravity, which is the quantum analogue of the
classical volume expression for regions in three dimensional Riemannian space.
Our analysis considers for the first time generic graph vertices of valence
greater than four. Here we find that the geometry of the underlying vertex
characterizes the spectral properties of the volume operator, in particular the
presence of a `volume gap' (a smallest non-zero eigenvalue in the spectrum) is
found to depend on the vertex embedding. We compute the set of all
non-spatially diffeomorphic non-coplanar vertex embeddings for vertices of
valence 5--7, and argue that these sets can be used to label spatial
diffeomorphism invariant states. We observe how gauge invariance connects
vertex geometry and representation properties of the underlying gauge group in
a natural way. Analytical results on the spectrum on 4-valent vertices are
included, for which the presence of a volume gap is proved. This paper presents
our main results; details are provided by a companion paper arXiv:0706.0382v1.Comment: 36 pages, 7 figures, LaTeX. See also companion paper
arXiv:0706.0382v1. Version as published in CQG in 2008. See arXiv:1003.2348
for important remarks regarding the sigma configurations. Subsequent
computations have revealed some minor errors, which do not change the
qualitative results but modify some of the numbers presented her
Semiclassical Mechanics of the Wigner 6j-Symbol
The semiclassical mechanics of the Wigner 6j-symbol is examined from the
standpoint of WKB theory for multidimensional, integrable systems, to explore
the geometrical issues surrounding the Ponzano-Regge formula. The relations
among the methods of Roberts and others for deriving the Ponzano-Regge formula
are discussed, and a new approach, based on the recoupling of four angular
momenta, is presented. A generalization of the Yutsis-type of spin network is
developed for this purpose. Special attention is devoted to symplectic
reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich
and Millson), and the reduction of Poisson bracket expressions for
semiclassical amplitudes. General principles for the semiclassical study of
arbitrary spin networks are laid down; some of these were used in our recent
derivation of the asymptotic formula for the Wigner 9j-symbol.Comment: 64 pages, 50 figure
Therapeutic control of hepatitis C virus: the role of neutralizing monoclonal antibodies
Liver failure associated with hepatitis C virus (HCV) accounts for a substantial portion of liver transplantation. Although current therapy helps some patients with chronic HCV infection, adverse side effects and a high relapse rate are major problems. These problems are compounded in liver transplant recipients as reinfection occurs shortly after transplantation. One approach to control reinfection is the combined use of specific antivirals together with HCV-specific antibodies. Indeed, a number of human and mouse monoclonal antibodies to conformational and linear epitopes on HCV envelope proteins are potential candidates, since they have high virus neutralization potency and are directed to epitopes conserved across diverse HCV genotypes. However, a greater understanding of the factors contributing to virus escape and the role of lipoproteins in masking virion surface domains involved in virus entry will be required to help define those protective determinants most likely to give broad protection. An approach to immune escape is potentially caused by viral infection of immune cells leading to the induction hypermutation of the immunoglobulin gene in B cells. These effects may contribute to HCV persistence and B cell lymphoproliferative diseases
Experimental Neuromyelitis Optica Induces a Type I Interferon Signature in the Spinal Cord
Neuromyelitis optica (NMO) is an acute inflammatory disease of the central nervous system (CNS) which predominantly affects spinal cord and optic nerves. Most patients harbor pathogenic autoantibodies, the so-called NMO-IgGs, which are directed against the water channel aquaporin 4 (AQP4) on astrocytes. When these antibodies gain access to the CNS, they mediate astrocyte destruction by complement-dependent and by antibody-dependent cellular cytotoxicity. In contrast to multiple sclerosis (MS) patients who benefit from therapies involving type I interferons (I-IFN), NMO patients typically do not profit from such treatments. How is I-IFN involved in NMO pathogenesis? To address this question, we made gene expression profiles of spinal cords from Lewis rat models of experimental neuromyelitis optica (ENMO) and experimental autoimmune encephalomyelitis (EAE). We found an upregulation of I-IFN signature genes in EAE spinal cords, and a further upregulation of these genes in ENMO. To learn whether the local I-IFN signature is harmful or beneficial, we induced ENMO by transfer of CNS antigen-specific T cells and NMO-IgG, and treated the animals with I-IFN at the very onset of clinical symptoms, when the blood-brain barrier was open. With this treatment regimen, we could amplify possible effects of the I-IFN induced genes on the transmigration of infiltrating cells through the blood brain barrier, and on lesion formation and expansion, but could avoid effects of I-IFN on the differentiation of pathogenic T and B cells in the lymph nodes. We observed that I-IFN treated ENMO rats had spinal cord lesions with fewer T cells, macrophages/activated microglia and activated neutrophils, and less astrocyte damage than their vehicle treated counterparts, suggesting beneficial effects of I-IFN.Funding Agencies|Austrian Science Fund [P25240-B24]; Austrian Ministry of Science, Research and Economy (BIGWIG-MS); Ministry of Education, Culture, Sports, Science and Technology of Japan; Alumni Association of Saitama Medical University</p