6,381 research outputs found

    Heavy ion plasma confinement in an RF quadrupole trap

    Get PDF
    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed

    The Electrostatic Ion Beam Trap : a mass spectrometer of infinite mass range

    Full text link
    We study the ions dynamics inside an Electrostatic Ion Beam Trap (EIBT) and show that the stability of the trapping is ruled by a Hill's equation. This unexpectedly demonstrates that an EIBT, in the reference frame of the ions works very similar to a quadrupole trap. The parallelism between these two kinds of traps is illustrated by comparing experimental and theoretical stability diagrams of the EIBT. The main difference with quadrupole traps is that the stability depends only on the ratio of the acceleration and trapping electrostatic potentials, not on the mass nor the charge of the ions. All kinds of ions can be trapped simultaneously and since parametric resonances are proportional to the square root of the charge/mass ratio the EIBT can be used as a mass spectrometer of infinite mass range

    On Objective Measures of Rule Surprisingness

    Get PDF
    Most of the literature argues that surprisingness is an inherently subjective aspect of the discovered knowledge, which cannot be measured in objective terms. This paper departs from this view, and it has a twofold goal: (1) showing that it is indeed possible to define objective (rather than subjective) measures of discovered rule surprisingness; (2) proposing new ideas and methods for defining objective rule surprisingness measures

    Plane gravitational waves and loop quantization

    Get PDF
    Starting from the polarized Gowdy model in Ashtekar variables, the Killing equations characteristic for plane-fronted parallel gravitational waves are introduced in part as a set of first-class constraints, in addition to the standard ones of General Relativity. These constraints are expressed in terms of quantities that have an operator equivalent in Loop Quantum Gravity, making plane wave space-times accessible to loop quantization techniques

    Toward loop quantization of plane gravitational waves

    Get PDF
    The polarized Gowdy model in terms of Ashtekar–Barbero variables is reduced with an additional constraint derived from the Killing equations for plane gravitational waves with parallel rays. The new constraint is formulated in a diffeomorphism invariant manner and, when it is included in the model, the resulting constraint algebra is first class, in contrast to the prior work done in special coordinates. Using an earlier work by Banerjee and Date, the constraints are expressed in terms of classical quantities that have an operator equivalent in loop quantum gravity, making these plane gravitational wave spacetimes accessible to loop quantization techniques

    Towards Loop Quantization of Plane Gravitational Waves

    Get PDF
    The polarized Gowdy model in terms of Ashtekar-Barbero variables is further reduced by including the Killing equations for plane-fronted parallel gravitational waves with parallel rays. The resulting constraint algebra, including one constraint derived from the Killing equations in addition to the standard ones of General Relativity, are shown to form a set of first-class constraints. Using earlier work by Banerjee and Date the constraints are expressed in terms of classical quantities that have an operator equivalent in Loop Quantum Gravity, making space-times with pp-waves accessible to loop quantization techniques.Comment: 14 page

    Pruning shade trees

    Get PDF
    Caption title

    Lawns and lawn making

    Get PDF
    Caption title.Digitized 2006 AES MoU
    • …
    corecore