2,844 research outputs found

    Towards ultra-high resolution 3D reconstruction of a whole rat brain from 3D-PLI data

    Full text link
    3D reconstruction of the fiber connectivity of the rat brain at microscopic scale enables gaining detailed insight about the complex structural organization of the brain. We introduce a new method for registration and 3D reconstruction of high- and ultra-high resolution (64 μ\mum and 1.3 μ\mum pixel size) histological images of a Wistar rat brain acquired by 3D polarized light imaging (3D-PLI). Our method exploits multi-scale and multi-modal 3D-PLI data up to cellular resolution. We propose a new feature transform-based similarity measure and a weighted regularization scheme for accurate and robust non-rigid registration. To transform the 1.3 μ\mum ultra-high resolution data to the reference blockface images a feature-based registration method followed by a non-rigid registration is proposed. Our approach has been successfully applied to 278 histological sections of a rat brain and the performance has been quantitatively evaluated using manually placed landmarks by an expert.Comment: 9 pages, Accepted at 2nd International Workshop on Connectomics in NeuroImaging (CNI), MICCAI'201

    Laboratory Tests of Low Density Astrophysical Equations of State

    Full text link
    Clustering in low density nuclear matter has been investigated using the NIMROD multi-detector at Texas A&M University. Thermal coalescence modes were employed to extract densities, ρ\rho, and temperatures, TT, for evolving systems formed in collisions of 47 AA MeV 40^{40}Ar + 112^{112}Sn,124^{124}Sn and 64^{64}Zn + 112^{112}Sn, 124^{124}Sn. The yields of dd, tt, 3^{3}He, and 4^{4}He have been determined at ρ\rho = 0.002 to 0.032 nucleons/fm3^{3} and TT= 5 to 10 MeV. The experimentally derived equilibrium constants for α\alpha particle production are compared with those predicted by a number of astrophysical equations of state. The data provide important new constraints on the model calculations.Comment: 5 pages, 3 figure

    An experimental survey of the production of alpha decaying heavy elements in the reactions of 238^{238}U +232^{232}Th at 7.5-6.1 MeV/nucleon

    Full text link
    The production of alpha particle decaying heavy nuclei in reactions of 7.5-6.1 MeV/nucleon 238^{238}U +232^{232}Th has been explored using an in-beam detection array composed of YAP scintillators and gas ionization chamber-Si telescopes. Comparisons of alpha energies and half-lives for the observed products with those of the previously known isotopes and with theoretically predicted values indicate the observation of a number of previously unreported alpha emitters. Alpha particle decay energies reaching as high as 12 MeV are observed. Many of these are expected to be from decay of previously unseen relatively neutron rich products. While the contributions of isomeric states require further exploration and specific isotope identifications need to be made, the production of heavy isotopes with quite high atomic numbers is suggested by the data.Comment: 12 pages, 12 figure

    Experimental Determination of In-Medium Cluster Binding Energies and Mott Points in Nuclear Matter

    Get PDF
    In medium binding energies and Mott points for dd, tt, 3^3He and α\alpha clusters in low density nuclear matter have been determined at specific combinations of temperature and density in low density nuclear matter produced in collisions of 47AA MeV 40^{40}Ar and 64^{64}Zn projectiles with 112^{112}Sn and 124^{124}Sn target nuclei. The experimentally derived values of the in medium modified binding energies are in good agreement with recent theoretical predictions based upon the implementation of Pauli blocking effects in a quantum statistical approach.Comment: 5 pages, 3 figure

    Formulation of the uncertainty relations in terms of the Renyi entropies

    Get PDF
    Quantum mechanical uncertainty relations for position and momentum are expressed in the form of inequalities involving the Renyi entropies. The proof of these inequalities requires the use of the exact expression for the (p,q)-norm of the Fourier transformation derived by Babenko and Beckner. Analogous uncertainty relations are derived for angle and angular momentum and also for a pair of complementary observables in N-level systems. All these uncertainty relations become more attractive when expressed in terms of the symmetrized Renyi entropies

    Properties of the Initial Participant Matter Interaction Zone in Near Fermi-Energy Heavy Ion Collisions

    Get PDF
    The sizes, temperatures and free neutron to proton ratios of the initial interaction zones produced in the collisions of 40 MeV/nucleon 40^{40}Ar + 112^{112}Sn and 55 MeV/nucleon27^{27}Al + 124^{124}Sn are derived using total detected neutron plus charged particle multiplicity as a measure of the impact parameter range and number of participant nucleons. The size of the initial interaction zone, determined from a coalescence model analysis, increases significantly with decreasing impact parameter. The temperatures and free neutron to proton ratios in the interaction zones are relatively similar for different impact parameter ranges and evolve in a similar fashion.Comment: 7 pages, 8 figure

    Tracing the Evolution of Temperature in Near Fermi Energy Heavy Ion Collisions

    Get PDF
    The kinetic energy variation of emitted light clusters has been employed as a clock to explore the time evolution of the temperature for thermalizing composite systems produced in the reactions of 26A, 35A and 47A MeV 64^{64}Zn with 58^{58}Ni, 92^{92}Mo and 197^{197}Au. For each system investigated, the double isotope ratio temperature curve exhibits a high maximum apparent temperature, in the range of 10-25 MeV, at high ejectile velocity. These maximum values increase with increasing projectile energy and decrease with increasing target mass. The time at which the maximum in the temperature curve is reached ranges from 80 to 130 fm/c after contact. For each different target, the subsequent cooling curves for all three projectile energies are quite similar. Temperatures comparable to those of limiting temperature systematics are reached 30 to 40 fm/c after the times corresponding to the maxima, at a time when AMD-V transport model calculations predict entry into the final evaporative or fragmentation stage of de-excitation of the hot composite systems. Evidence for the establishment of thermal and chemical equilibrium is discussed.Comment: 9 pages, 5 figure

    Nuclear Multifragmentation in the Non-extensive Statistics - Canonical Formulation

    Get PDF
    We apply the canonical quantum statistical model of nuclear multifragmentation generalized in the framework of recently proposed Tsallis non-extensive thermostatistics for the description of nuclear multifragmentation process. The test calculation in the system with A=197 nucleons show strong modification of the 'critical' behaviour associated with the nuclear liquid-gas phase transition for small deviations from the conventional Boltzmann-Gibbs statistical mechanics.Comment: 4 pages, 4 figure
    corecore