12 research outputs found

    Knockdown of microRNA-29a Changes the Expression of Heat Shock Proteins in Breast Carcinoma MCF-7 Cells

    Get PDF
    Breast cancer is the most commonly occurring cancer among women. MicroRNAs as noncoding small RNA molecules play pivotal roles in cancer-related biological processes. Increased levels of microRNA-29a in the serum of breast cancer patients have been reported. Since heat shock proteins (HSPs) play important roles in cell events, the quantitative fluctuations in their cellular levels could be deemed as key indicators of how the exerted treatment alters cell behavior. In this regard, using an antisense small RNA, we attempted to investigate the effects of miR-29a knockdown on the expression of HSPs genes in the MCF-7 breast cancer cell line. MCF-7 cells were cultured in high-glucose Dulbecco’s modified Eagle’s medium with 10% FBS. Studied cells were subdivided into five groups: treated with scramble, anti-miR-29a, anti-miR-29a + Taxol, Taxol, and control. Taxol was added 24 h post-anti-miR transfection and RNA extraction, and cDNA synthesis was done 48 h later. The changes in expression of HSP27, HSP40, HSP60, HSP70, and HSP90 were evaluated by real-time PCR. Our results revealed that inhibitors of microRNA-29a promote apoptosis through upregulation of HSP60 level and downregulation of HSP27, HSP40, HSP70, and HSP90 levels and could be contemplated as a compelling alternative for Taxol employment with similar effects and/or to sensitize cancer cells to chemotherapy with fewer side effects

    DNA Methylation and Histone Acetylation Patterns in Cultured Bovine Adipose Tissue-Derived Stem Cells (BADSCs)

    Get PDF
    Objective: Many studies have focused on the epigenetic characteristics of donor cells to improve somatic cell nuclear transfer (SCNT). We hypothesized that the epigenetic status and chromatin structure of undifferentiated bovine adipose tissue-derived stem cells (BADSCs) would not remain constant during different passages. The objective of this study was to determine the mRNA expression patterns of DNA methyltransferases (DNMT1, DNMT3a, DNMT3b) and histone deacetyltransferses (HDAC1, HDAC2, HDAC3) in BADSCs. In addition, we compared the measured levels of octamer binding protein-4 expression (OCT4) and acetylation of H3K9 (H3K9ac) in BADSCs cultures and different passages in vitro. Materials and Methods: In this experimental study, subcutaneous fat was obtained from adult cows immediately post-mortem. Relative level of DNMTs and HDACs was examined using quantitative real time polymerase chain reaction (q-PCR), and the level of OCT4 and H3K9ac was analyzed by flow cytometry at passages 3 (P3), 5 (P5) and 7 (P7). Results: The OCT4 protein level was similar at P3 and P5 but a significant decrease in its level was seen at P7. The highest and lowest levels of H3K9ac were observed at P5 and P7, respectively. At P5, the expression of HDACs and DNMTs was significantly decreased. In contrast, a remarkable increase in the expression of DNMTs was observed at P7. Conclusion: Our data demonstrated that the epigenetic status of BADSCs was variable during culture. The P5 cells showed the highest level of stemness and multipotency and the lowest level of chromatin compaction. Therefore, we suggest that P5 cells may be more efficient for SCNT compared with other passages

    Efficient Expansion of SALL4–Transduced Umbilical Cord Blood Derived CD133+Hematopoietic Stem Cells

    No full text
    Hematopoietic stem cells (HSCs) were characterized by self-renewal and multilineage potential. Umbilical cord blood-derived (UCB) as an alternative source of HSCs is widely used especially in children for stem cells transplant (SCT). The main limitation in using UCB for transplantation especially in adults is low cell dose. To overcome this limitation besides using double dose UCB, ex vivo expansion is the most important way to increase cell number for transplantation. HSCs are mainly isolated using CD133 or CD34. CD133, as the most primitive marker, shows important physiological role in maintenance and expansion of HSCs. SALL4 plays crucial role in the development and maintaining the pluripotency and self-renewal ability of embryonic stem cells (ESCs) as well as HSCs. Moreover, SALL4 act as a regulator of HSCs expansion, normal hematopoiesis, and hematological malignancies. In the present study, CD133+ cells positively selected and ex vivo expanded in SALL-4 and GFP-transduced group. CD133 expression assessed using flow cytometry at day 0, 7 and 10. Moreover, multilineage differentiation and proliferation potential of expanded cells in both groups evaluated using colony forming unit (CFU) assay, and cells count assay. Karyotyping analysis was performed to assess any chromosomal instability after 7 days of expansion. Obtained results demonstrated that SALL-4 transduced cells showed significant increase in cell number compared to control group. Moreover, immunophenotyping results showed higher expression level of CD133 at day 7 and 10 following expansion in SALL-4 transduced (62 % and 42%) compared to control group (51% and 20.6%). Our results illustrated that SALL4 could act as a positive factor for the expansion of CD133+ derived UCB cells besides maintaining self-renewal and differentiation ability of expanded cell without any numerical and structural chromosomal aberrations

    Plasma Electrolytic Oxidation (PEO) Coating on γ-TiAl Alloy: Investigation of Bioactivity and Corrosion Behavior in Simulated Body Fluid

    No full text
    The effect of applied voltage (400, 450, and 500 V) on the microstructure, bioactivity, and corrosion rate of plasma electrolytic oxidation (PEO) coatings on γ-TiAl alloy was investigated. The microstructure and chemical composition of the achieved coatings were studied, along with their corrosion and bioactivity behaviors in simulated body fluid (SBF). The results demonstrated that the higher the coating′s surface pore, the greater the number of suitable sites for the formation of hydroxyapatite with a spherical structure. The coatings applied utilizing 400, 450, and 500 V displayed 59.4, 96.6, and 145 Ω.cm2 as their inner layer electrical resistances, respectively. The findings of the biological examination revealed that Mesenchymal stem cells (MSCs) displayed more cytocompatibility and had a higher capacity for cell attachment in the PEO-coated sample than in γ-TiAl, as a result of better initial cell attachment made possible by the topography of the 500 V PEO coatings. The latter has significant potential to be employed in orthopedic applications

    Evaluation of the expansion of umbilical cord blood derived from CD133+ cells on biocompatible microwells

    No full text
    Background: Hematopoietic stem cell transplantation (HSCT) is a therapeutic approach for treatment of hematological malignancies and incompatibility of Bone marrow. Umbilical cord blood (UCB) has known as an alternative for hematopoietic stem/progenitor cells (HPSC) in allogeneic transplantation. The low volume of collected samples is the main hindrance in application of HPSC derived from umbilical cord blood. So, ex vivo expansion of HPSCs is the useful approach to overcome this restriction. The goal of using this system is to produce appropriate amount of hematopoietic stem cells, which have the ability of transplantation and long term haematopoiesis. Material & Methods: In current study CD133+ cells were isolated from cord blood (CB). Isolated cells were seeded on microwells. Then expanded cells proliferation rate and ability in colony formation were assessed and finally were compared with 2 Dimensional (2D) culture systems. Results: Our findings demonstrated that CD133+ cells derived from UCB which were cultivated on microwells had significantly higher rate of proliferation in compared with routine cell culture systems. Conclusion: In Current study, it was shown that CD133+ cells’ proliferations which were seeded on PDMS microwells coated with collagen significantly increased. We hope that 3 dimensional (3D) microenvironment which mimics the 3D structure of bone marrow can solve the problem of using UCB as an alternative source of bone marrow

    Investigating the Relationship Between MiR210 Upregulation and Hemoglobin Gamma Chain Expression

    No full text
    Background and Aim: Micro RNAs are a group of small non-coding RNAs which play an important role in multiple processes such as proliferation, differentiation, apoptosis, and cancer. Recent studies indicate that mir-210 is overexpressed into erythroid linage during the differentiation of hematopoietic precursor. The main goal of the present study is to investigate the influence of mir-210 on the pattern of expression in hemoglobin gamma chain. Materials and Methods: First, K562 cell line was cultured in RPMI1640 media. Then, pre-miR-210 was transferred into K562 cell line by lipofectamin. Finally, the alterations in the pattern of gamma chain expression were analyzed in days 7 and 14 by RT-PCR and real time PCR technique. Results: It was demonstrated that the overexpression of mir-210 in K562 cell line would lead to a 25-fold increase in the expression of gamma chain in comparison with the control group. Data analysis revealed that the change in the pattern of hemoglobin gamma chain expression was meaningful (p<0.002). Conclusion: Based on these data, overexpression of mir-210 can lead to a significant increase in the production of gamma chain. Therefore, more studies in the field may reveal the fact that an increase in mir-210 can be a suitable goal in the improvement of sickle cell anemia and β-thalassemia

    FGF10 Therapeutic Administration Promotes Mobilization of Injury-Activated Alveolar Progenitors in a Mouse Fibrosis Model

    No full text
    Idiopathic pulmonary fibrosis (IPF) is a devastating interstitial lung disease with dire consequences and in urgent need of improved therapies. Compelling evidence indicates that damage or dysfunction of AT2s is of central importance in the development of IPF. We recently identified a novel AT2 subpopulation characterized by low SFTPC expression but that is enriched for PD-L1 in mice. These cells represent quiescent, immature AT2 cells during normal homeostasis and expand upon pneumonectomy (PNX) and were consequently named injury-activated alveolar progenitors (IAAPs). FGF10 is shown to play critical roles in lung development, homeostasis, and injury repair demonstrated in genetically engineered mice. In an effort to bridge the gap between the promising properties of endogenous Fgf10 manipulation and therapeutic reality, we here investigated whether the administration of exogenous recombinant FGF10 protein (rFGF10) can provide preventive and/or therapeutic benefit in a mouse model of bleomycin-induced pulmonary fibrosis with a focus on its impact on IAAP dynamics. C57BL/6 mice and SftpcCreERT2/+; tdTomatoflox/+ mice aged 8–10 weeks old were used in this study. To induce the bleomycin (BLM) model, mice were intratracheally (i.t.) instilled with BLM (2 μg/g body weight). BLM injury was induced after a 7-day washout period following tamoxifen induction. A single i.t. injection of rFGF10 (0.05 μg/g body weight) was given on days 0, 7, 14, and 21 after BLM injury. Then, the effects of rFGF10 on BLM-induced fibrosis in lung tissues were assessed by H&E, IHC, Masson’s trichrome staining, hydroxyproline and Western blot assays. Immunofluorescence staining and flow cytometry was used to assess the dynamic behavior of AT2 lineage-labeled SftpcPos (IAAPs and mature AT2) during the course of pulmonary fibrosis. We observed that, depending on the timing of administration, rFGF10 exhibited robust preventive or therapeutic efficacy toward BLM-induced fibrosis based on the evaluation of various pathological parameters. Flow cytometric analysis revealed a dynamic expansion of IAAPs for up to 4 weeks following BLM injury while the number of mature AT2s was drastically reduced. Significantly, rFGF10 administration increased both the peak ratio and the duration of IAAPs expansion relative to EpCAMPos cells. Altogether, our results suggest that the administration of rFGF10 exhibits therapeutic potential for IPF most likely by promoting IAAP proliferation and alveolar repair

    Enhanced Cardiac Differentiation of Human Cardiovascular Disease Patient-Specific Induced Pluripotent Stem Cells by Applying Unidirectional Electrical Pulses Using Aligned Electroactive Nanofibrous Scaffolds

    No full text
    In the embryonic heart, electrical impulses propagate in a unidirectional manner from the sinus venosus and appear to be involved in cardiogenesis. In this work, aligned and random polyaniline/polyetersulfone (PANI/PES) nanofibrous scaffolds doped by Camphor-10-sulfonic acid (β) (CPSA) were fabricated via electrospinning and used to conduct electrical impulses in a unidirectional and multidirectional fashion, respectively. A bioreactor was subsequently engineered to apply electrical impulses to cells cultured on PANI/PES scaffolds. We established cardiovascular disease-specific induced pluripotent stem cells (CVD-iPSCs) from the fibroblasts of patients undergoing cardiothoracic surgeries. The CVD-iPSCs were seeded onto the scaffolds, cultured in cardiomyocyte-inducing factors, and exposed to electrical impulses for 1 h/day, over a 15-day time period in the bioreactor. The application of the unidirectional electrical stimulation to the cells significantly increased the number of cardiac Troponin T (cTnT+) cells in comparison to multidirectional electrical stimulation using random fibrous scaffolds. This was confirmed by real-time polymerase chain reaction for cardiac-related transcription factors (<i>NKX2.5, GATA4</i>, and <i>NPPA</i>) and a cardiac-specific structural gene (<i>TNNT2</i>). Here we report for the first time that applying electrical pulses in a unidirectional manner mimicking the unidirectional wave of electrical stimulation in the heart, could increase the derivation of cardiomyocytes from CVD-iPSCs
    corecore