18 research outputs found

    A 62-minute orbital period black widow binary in a wide hierarchical triple

    Get PDF
    Over a dozen millisecond pulsars are ablating low-mass companions in close binary systems. In the original ‘black widow’, the eight-hour orbital period eclipsing pulsar PSR J1959+2048 (PSR B1957+20)1, high-energy emission originating from the pulsar2 is irradiating and may eventually destroy3 a low-mass companion. These systems are not only physical laboratories that reveal the interesting results of exposing a close companion star to the relativistic energy output of a pulsar, but are also believed to harbour some of the most massive neutron stars4, allowing for robust tests of the neutron star equation of state. Here we report observations of ZTF J1406+1222, a wide hierarchical triple hosting a 62-minute orbital period black widow candidate, the optical flux of which varies by a factor of more than ten. ZTF J1406+1222 pushes the boundaries of evolutionary models5, falling below the 80-minute minimum orbital period of hydrogen-rich systems. The wide tertiary companion is a rare low-metallicity cool subdwarf star, and the system has a Galactic halo orbit consistent with passing near the Galactic Centre, making it a probe of formation channels, neutron star kick physics6 and binary evolution

    Detection of Multiple Radio Bursts from FRB 121102 using the Deep Space Network

    Get PDF
    We report the detection of multiple bright radio bursts from therepeating fast radio burst (FRB) source FRB 121102 using the 70 mdiameter Deep Space Network (DSN) radio telescope (DSS-43) inTidbinbilla, Australia [1]. We carried out a continuous 5.7 hour observation of the position of FRB 121102 [2, 3], starting at 06 September 2019 17:27:55 UTC, following alerts that the source is now in an active state (e.g., ATels #13064, #13073, #13090, #13098)

    Magnetar spin-down glitch clearing the way for FRB-like bursts and a pulsed radio episode

    Get PDF
    Magnetars are a special subset of the isolated neutron star family, with X-ray and radio emission mainly powered by the decay of their immense magnetic fields. Many attributes of magnetars remain poorly understood: spin-down glitches or the sudden reductions in the star's angular momentum, radio bursts reminiscent of extra-galactic Fast Radio Bursts (FRBs), and transient pulsed radio emission lasting months to years. Here we unveil the detection of a large spin-down glitch event (∣Δν/ν∣=5.8−1.6+2.6×10−6|\Delta\nu/\nu| = 5.8_{-1.6}^{+2.6}\times10^{-6}) from the magnetar SGR~1935+2154 on 2020 October 5 (+/- 1 day). We find no change to the source persistent surface thermal or magnetospheric X-ray behavior, nor is there evidence of strong X-ray bursting activity. Yet, in the subsequent days, the magnetar emitted three FRB-like radio bursts followed by a month long episode of pulsed radio emission. Given the rarity of spin-down glitches and radio signals from magnetars, their approximate synchronicity suggests an association, providing pivotal clues to their origin and triggering mechanisms, with ramifications to the broader magnetar and FRB populations. We postulate that impulsive crustal plasma shedding close to the magnetic pole generates a wind that combs out magnetic field lines, rapidly reducing the star's angular momentum, while temporarily altering the magnetospheric field geometry to permit the pair creation needed to precipitate radio emission

    X-Ray Burst and Persistent Emission Properties of the Magnetar SGR 1830-0645 in Outburst

    No full text
    We report on NICER X-ray monitoring of the magnetar SGR 1830−0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: ν = 0.096008680(2) Hz, ν.= -6.2(1) x 10-14 Hz s−1, and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8–7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed. We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum—the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission

    X-Ray Burst and Persistent Emission Properties of the Magnetar SGR 1830-0645 in Outburst

    No full text
    We report on NICER X-ray monitoring of the magnetar SGR 1830−0645 covering 223 days following its 2020 October outburst, as well as Chandra and radio observations. We present the most accurate spin ephemerides of the source so far: ν = 0.096008680(2) Hz, ν.= -6.2(1) x 10-14 Hz s−1, and significant second and third frequency derivative terms indicative of nonnegligible timing noise. The phase-averaged 0.8–7 keV spectrum is well fit with a double-blackbody (BB) model throughout the campaign. The BB temperatures remain constant at 0.46 and 1.2 keV. The areas and flux of each component decreased by a factor of 6, initially through a steep decay trend lasting about 46 days, followed by a shallow long-term one. The pulse shape in the same energy range is initially complex, exhibiting three distinct peaks, yet with clear continuous evolution throughout the outburst toward a simpler, single-pulse shape. The rms pulsed fraction is high and increases from about 40% to 50%. We find no dependence of pulse shape or fraction on energy. These results suggest that multiple hot spots, possibly possessing temperature gradients, emerged at outburst onset and shrank as the outburst decayed. We detect 84 faint bursts with NICER, having a strong preference for occurring close to the surface emission pulse maximum—the first time this phenomenon is detected in such a large burst sample. This likely implies a very low altitude for the burst emission region and a triggering mechanism connected to the surface active zone. Finally, our radio observations at several epochs and multiple frequencies reveal no evidence of pulsed or burst-like radio emission
    corecore