26 research outputs found

    Carbon dioxide (CO2) utilizing strain database

    Get PDF
    Culling of excess carbon dioxide from our environment is one of the major challenges to scientific communities. Many physical, chemical and biological methods have been practiced to overcome this problem. The biological means of CO2 fixation using various microorganisms is gaining importance because database of their substantial role in reversing global warming. Carbon dioxide utilizing strain database (CSD) presents a comprehensive overview of microorganisms involved in biological fixation of carbon dioxide. As a part of this work, the wealth of information on CO2 utilizing strains was first collected and was then managed within four classes, that is, microorganisms, genus listing, mechanisms and literature. The first two classes consolidate information regarding the microbial genus and species, while the later two provide information regarding the CO2 fixing pathways and the taxonomic details of these organisms. The database also holds the current information about the issue. CSD can be used to gain information related to CO2 fixing microbes. It can also contribute to devising biological strategies for reducing carbon dioxide from the environment. It introduces an innovative idea of exploring the potential of these bacterial strains for reversing global warming. The CSD can be accessed at http://csd.igib.res.in.Key words: Carbon dioxide utilizing strain database (CSD), carbon dioxide, autotrophic microorganisms, global warming, biological fixation of CO2, CO2 fixing pathways

    Spermatogonial Stem Cell Niche and Spermatogonial Stem Cell Transplantation in Zebrafish

    Get PDF
    Background Spermatogonial stem cells (SSCs) are the foundation of spermatogenesis, and reside within a specific microenvironment in the testes called “niche” which regulates stem cell properties, such as, self-renewal, pluripotency, quiescence and their ability to differentiate. Methodology/Principal Findings Here, we introduce zebrafish as a new model for the study of SSCs in vertebrates. Using 5′-bromo-2′-deoxyuridine (BrdU), we identified long term BrdU-retaining germ cells, type A undifferentiated spermatogonia as putative stem cells in zebrafish testes. Similar to rodents, these cells were preferentially located near the interstitium, suggesting that the SSC niche is related to interstitial elements and might be conserved across vertebrates. This localization was also confirmed by analyzing the topographical distribution of type A undifferentiated spermatogonia in normal, vasa::egfp and fli::egfp zebrafish testes. In the latter one, the topographical arrangement suggested that the vasculature is important for the SSC niche, perhaps as a supplier of nutrients, oxygen and/or signaling molecules. We also developed an SSC transplantation technique for both male and female recipients as an assay to evaluate the presence, biological activity, and plasticity of the SSC candidates in zebrafish. Conclusions/Significance We demonstrated donor-derived spermato- and oogenesis in male and female recipients, respectively, indicating the stemness of type A undifferentiated spermatogonia and their plasticity when placed into an environment different from their original niche. Similar to other vertebrates, the transplantation efficiency was low. This might be attributed to the testicular microenvironment created after busulfan depletion in the recipients, which may have caused an imbalance between factors regulating self-renewal or differentiation of the transplanted SSCs
    corecore