23 research outputs found

    Role of gene therapy in fanconi anemia: A systematic and literature review with future directions

    Get PDF
    Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fanconi anemia (FA); however, its clinical application is still in the initial stages. We conducted this systematic review, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and Google Scholar were conducted and full texts of articles meeting our inclusion criteria were reviewed. Three clinical trials were included, with a total of nine patients and mean age of 10.7 ± 5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabilization in blood lineages, without any serious adverse effects from GT. A metaregression analysis could not be conducted, as very little long-term follow-up data of patients was observed, and the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a safe procedure in FA; however, further research needs to be conducted on the longitudinal clinical effects of GT in FA, for a better insight into its potential to become a standard form of treatment

    Germline PTEN Promoter Mutations and Deletions in Cowden/Bannayan-Riley-Ruvalcaba Syndrome Result in Aberrant PTEN Protein and Dysregulation of the Phosphoinositol-3-Kinase/Akt Pathway

    Get PDF
    Germline intragenic mutations in PTEN are associated with 80% of patients with Cowden syndrome (CS) and 60% of patients with Bannayan-Riley-Ruvalcaba syndrome (BRRS). The underlying genetic causes remain to be determined in a considerable proportion of classic CS and BRRS without a polymerase chain reaction (PCR)-detectable PTEN mutation. We hypothesized that gross gene deletions and mutations in the PTEN promoter might alternatively account for a subset of apparently mutation-negative patients with CS and BRRS. Using real time and multiplex PCR techniques, we identified three germline hemizygous PTEN deletions in 122 apparently mutation-negative patients with classic CS (N=95) or BRRS (N=27). Fine mapping suggested that one deletion encompassed the whole gene and the other two included exon 1 and encompassed exons 1–5 of PTEN, respectively. Two patients with the deletion were diagnosed with BRRS, and one patient with the deletion was diagnosed with BRRS/CS overlap (features of both). Thus 3 (11%) of 27 patients with BRRS or BRRS/CS-overlap had PTEN deletions. Analysis of the PTEN promoter revealed nine cases (7.4%) harboring heterozygous germline mutations. All nine had classic CS, representing almost 10% of all subjects with CS. Eight had breast cancers and/or benign breast tumors but, otherwise, oligo-organ involvement. PTEN protein analysis, from one deletion-positive and five PTEN-promoter-mutation–positive samples, revealed a 50% reduction in protein and multiple bands of immunoreactive protein, respectively. In contrast, control samples showed only the expected band. Further, an elevated level of phosphorylated Akt was detected in the five promoter-mutation–positive samples, compared with controls, indicating an absence of or marked reduction in functional PTEN. These data suggest that patients with BRRS and CS without PCR-detected intragenic PTEN mutations be offered clinical deletion analysis and promoter-mutation analysis, respectively

    Altered TGFβ signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency

    No full text
    Fibulin-4 is a member of the fibulin family, a group of extracellular matrix proteins prominently expressed in medial layers of large veins and arteries. Involvement of the FBLN4 gene in cardiovascular pathology was shown in a murine model and in three patients affected with cutis laxa in association with systemic involvement. To elucidate the contribution of FBLN4 in human disease, we investigated two cohorts of patients. Direct sequencing of 17 patients with cutis laxa revealed no FBLN4 mutations. In a second group of 22 patients presenting with arterial tortuosity, stenosis and aneurysms, FBLN4 mutations were identified in three patients, two homozygous missense mutations (p.Glu126Lys and p.Ala397Thr) and compound heterozygosity for missense mutation p.Glu126Val and frameshift mutation c.577delC. Immunoblotting analysis showed a decreased amount of fibulin-4 protein in the fibroblast culture media of two patients, a finding sustained by diminished fibulin-4 in the extracellular matrix of the aortic wall on immunohistochemistry. pSmad2 and CTGF immunostaining of aortic and lung tissue revealed an increase in transforming growth factor (TGF)β signaling. This was confirmed by pSmad2 immunoblotting of fibroblast cultures. In conclusion, patients with recessive FBLN4 mutations are predominantly characterized by aortic aneurysms, arterial tortuosity and stenosis. This confirms the important role of fibulin-4 in vascular elastic fiber assembly. Furthermore, we provide the first evidence for the involvement of altered TGFβ signaling in the pathogenesis of FBLN4 mutations in humans

    DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation

    No full text
    The adaptors DOCK8 and MyD88 have been linked to serological memory. Here we report that DOCK8-deficient patients had impaired antibody responses and considerably fewer CD27(+) memory B cells. B cell proliferation and immunoglobulin production driven by Toll-like receptor 9 (TLR9) were considerably lower in DOCK8-deficient B cells, but those driven by the costimulatory molecule CD40 were not. In contrast, TLR9-driven expression of AICDA (which encodes the cytidine deaminase AID), the immunoglobulin receptor CD23 and the costimulatory molecule CD86 and activation of the transcription factor NF-kappaB, the kinase p38 and the GTPase Rac1 were intact. DOCK8 associated constitutively with MyD88 and the tyrosine kinase Pyk2 in normal B cells. After ligation of TLR9, DOCK8 became tyrosine-phosphorylated by Pyk2, bound the Src-family kinase Lyn and linked TLR9 to a Src-kinase Syk-transcription factor STAT3 cascade essential for TLR9-driven B cell proliferation and differentiation. Thus, DOCK8 functions as an adaptor in a TLR9-MyD88 signaling pathway in B cells

    Duvoglustat HCl Increases Systemic and Tissue Exposure of Active Acid α-Glucosidase in Pompe Patients Co-administered with Alglucosidase α

    No full text
    Duvoglustat HCl (AT2220, 1-deoxynojirimycin) is an investigational pharmacological chaperone for the treatment of acid α-glucosidase (GAA) deficiency, which leads to the lysosomal storage disorder Pompe disease, which is characterized by progressive accumulation of lysosomal glycogen primarily in heart and skeletal muscles. The current standard of care is enzyme replacement therapy with recombinant human GAA (alglucosidase alfa [AA], Genzyme). Based on preclinical data, oral co-administration of duvoglustat HCl with AA increases exposure of active levels in plasma and skeletal muscles, leading to greater substrate reduction in muscle. This phase 2a study consisted of an open-label, fixed-treatment sequence that evaluated the effect of single oral doses of 50 mg, 100 mg, 250 mg, or 600 mg duvoglustat HCl on the pharmacokinetics and tissue levels of intravenously infused AA (20 mg/kg) in Pompe patients. AA alone resulted in increases in total GAA activity and protein in plasma compared to baseline. Following co-administration with duvoglustat HCl, total GAA activity and protein in plasma were further increased 1.2- to 2.8-fold compared to AA alone in all 25 Pompe patients; importantly, muscle GAA activity was increased for all co-administration treatments from day 3 biopsy specimens. No duvoglustat-related adverse events or drug-related tolerability issues were identified
    corecore