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26 Abstract
27 Gene therapy (GT) has been reported to improve bone marrow function in individuals with Fan-
28 coni anemia (FA); however, its clinical application is still in the initial stages. We conducted
29 this systematic review, following the Preferred Reporting Items for Systematic Reviews and
30 Meta-Analyses (PRISMA) guidelines, to assess the long-term safety and clinical outcomes of
31 GT in FA patients. Electronic searches from PubMed, Web of Science, Cochrane Library, and
32 Google Scholar were conducted and full texts of articles meeting our inclusion criteria were
33 reviewed. Three clinical trials were included, with a total of nine patients and mean age of
34 10.7 ± 5.7 years. All patients had lentiviral-mediated GT. A 1-year follow-up showed stabiliza-
35 tion in blood lineages, without any serious adverse effects from GT. A metaregression analysis
36 could not be conducted, as very little long-term follow-up data of patients was observed, and
37 the median survival rate could not be calculated. Thus, we can conclude that GT seems to be a
38 safe procedure in FA; however, further research needs to be conducted on the longitudinal clin-
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39 ical effects of GT in FA, for a better insight into its potential to become a standard form of
40 treatment.
4142 � 2021 King Faisal Specialist Hospital & Research Centre. Published by Elsevier Ltd. This is an
43 open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-
44 nd/4.0/).

45

46 Introduction

47 Fanconi Anemia (FA) is an inherited bone marrow failure
48 (BMF) syndrome, characterized by congenital malforma-
49 tions, pancytopenia, cancer predisposition, and sensitivity
50 to cross-linking agents [1]. To date, 22 genes have been
51 implicated in FA, which code for ‘‘FANC” proteins that rec-
52 ognize and repair DNA damage. Disease results from
53 homozygous mutations in both alleles (autosomal recessive)
54 of the specific FANC (A-W) gene, except for FANCB (X-
55 linked), and FANCR (dominantly inherited), which encodes
56 RAD51 [2,3].
57 Although androgens have been used to improve cytope-
58 nias caused by FA, the only current cure available is a
59 hematopoietic cell transplant (HCT) [4,5]. Another evolving
60 management strategy is gene therapy (GT), which can
61 potentially improve BM function in FA patients, and help
62 overcome limitations of HCT such as relapse and graft-
63 versus-host disease (GVHD), which are associated with a
64 high mortality and morbidity [6,7].
65 The regenerative nature of hematopoietic stem cells
66 (HSCs) has potential for maximum regain of function and
67 elimination of hematological abnormalities after genetic
68 correction in FA [8]. In addition, mosaicism in FA patients
69 allows for a natural reversion to normal hematopoiesis by
70 providing these corrected stem cells with a strong repopula-
71 tion and survival advantage in vivo over FA stem cells, mak-
72 ing FA compelling for GT [9].
73 In gene addition, functional copies of the gene are added
74 with the help of viruses, such as adenovirus or retrovirus.
75 Retroviruses have the potential to transfer a specific FA
76 gene, for example, FANCC, to HSCs [10,11]. Although
77 gamma-retroviruses have been associated with genotoxicity
78 [12,13], recent developments in lentiviral (LV) vectors have
79 shown excellent safety profiles, with optimized transcrip-
80 tional activity required for correction of hematopoietic pro-
81 genitors in FA [14–16].
82 We undertook a systematic review to evaluate the total-
83 ity of evidence for the role of GT in FA with respect to clin-
84 ical and long-term outcomes.

85 Methods

86 This review follows the Preferred Reporting Items for Sys-
87 tematic Reviews and Meta Analyses (PRISMA) guidelines
88 [17].

89 Selection criteria

90 Inclusion criteria

91 For types of studies: randomized control trials (RCT), clini-
92 cal trials (CTs) or quasi-randomized trials, as well as retro-

93spective studies, case reports, and case controls. For types
94of participants: individuals with FA of any age or sex,
95regardless of geography. For types of interventions: GT,
96with or without standard treatment of HCT. For time of pub-
97lishing: studies published from 2005 to 2019.

98Exclusion criteria

99Papers were excluded if they were non-English literature,
100murine studies, or review articles.

101Types of outcomes (attributable to and after GT)

102Primary outcomes

103The primary outcomes included: symptom-free survival (in-
104dividuals alive and free of FA symptoms); serious adverse
105events (SAEs), including genotoxic events, death, in-
106patient admissions, life-threatening complications, or sig-
107nificant disability and impairment; long-term survival prob-
108ability of individuals with FA.

109Secondary outcomes

110Secondary outcomes were post-infusion blood cell counts
111[hemoglobin (Hb), platelets (Plts), and neutrophils]; need
112for blood transfusions or HCT; and quality of life (QoL).

113Search methods for identification of studies

114Electronic searches implemented for each search engine
115included PubMed, Web of Science, Cochrane Library, and
116Google Scholar using the following search strategies:

117PubMed: ((‘‘Fanconi Anemia”[Mesh]) AND (‘‘Genetic
118Therapy”[Mesh] OR ‘‘Gene Editing”[Mesh] OR ‘‘Gene
119Transfer”[Mesh])).
120Web of Science: (‘‘Fanconi Anemia”) AND (‘‘Genetic
121Therapy” OR ‘‘Gene Editing”).
122Cochrane Library: (‘‘Fanconi Anemia”) AND (‘‘Gene Edit-
123ing” OR ‘‘Gene Therapy”).
124Google Scholar: (‘‘Fanconi Anemia”) AND (‘‘Genetic
125Therapy”) and (‘‘Fanconi Anemia”) AND (‘‘Genetic
126Editing”).

127The date of the most recent search was December 30,
1282019.

129Search for other resources

130Other resources were screened through the reference lists
131of included studies to identify potentially relevant studies.

132Data collection and analysis

133Two authors independently undertook searches for eligible
134studies.
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135 Selection of studies

136 Search results were compiled in referencing software (End-
137 Note X8) and duplicates excluded. Two authors indepen-
138 dently screened and filtered through the search results
139 using the titles of the studies. A consecutive second screen-
140 ing using abstracts was performed, and full texts of articles
141 that met our inclusion criteria were reviewed. Upon dis-
142 agreement regarding the inclusion of an article, a consensus
143 meeting with a third author was held.

144 Data extraction and management

145 Two authors independently extracted data from the
146 included studies, using a structured data form, which
147 included:

148 1. Study characteristics: title; authors; year of publication;
149 journal name; study type; and sample size of patients.
150 2. Patients: gender; age at GT (years); mutation and speci-
151 fic protein type; baseline blood cell counts [Hb (g/dl),
152 neutrophils (/µL) and Plts (103/µl)]; and baseline bone
153 marrow CD34+ cells collected (106/kg) and colony form-
154 ing cells (CFCs) (/µL).
155 3. Intervention: cryopreservation; cell mobilization; trans-
156 duced/infused CD34+ cells; total nucleated cells (TNCs)
157 infused; transduced CFCs; vector used and its specific
158 subtype; number of transductions; vector copy number
159 (VCN).
160 4. Follow-up (FU) after GT: post-infusion blood cell counts;
161 serious adverse effects (SAEs) from the investigational
162 therapy; CFC survival to mitomycin-C (MMC) pre- and
163 post-infusion (%); and cytogenetic abnormalities post-
164 infusion.
165

166 Dealing with missing data

167 If numerical data was not reported, or full texts did not pro-
168 vide sufficient information, efforts were made to contact
169 the authors to request for necessary data for further
170 analysis.

171 Assessment of risk of bias in the included studies

172 Two authors independently planned to assess the risk of bias
173 for RCTs and other CTs from the Cochrane Risk of Bias (RoB)
174 tool, using bias from randomization process, deviations
175 from the intended interventions, missing outcome data, in
176 measurement of the outcome, in selection of the reported
177 result, and overall bias [18]. In case of controls or cohort
178 studies, we planned to use the Newcastle Ottawa Scale
179 (NOS), with the use of a ‘‘star” system [19].

180 Measures of treatment effect

181 For continuous outcome data, we calculated the means and
182 standard deviations (SD), using SPSS version 25.0 (SPSS Inc.,
183 Chicago, IL, USA). If outcomes had different units, the stan-
184 dardized mean difference (SMD) and their associated 95%
185 confidence intervals (CI) would be used.

186Data synthesis

187We planned to assess for clinical homogeneity between
188results, to see if a meta-analysis can be conducted. If not,
189a descriptive/qualitative analysis was considered to be the
190default.

191Assessment of reporting biases

192Assessment for publication bias was planned if at least 10
193trials were included in our systematic review, using the fun-
194nel plot to check for presence of asymmetry. If it was pre-
195sent, then publication bias would be considered a possible
196factor in skewing the results [20].

197Assessment of heterogeneity

198Statistical heterogeneity would be calculated using the chi-
199square test for homogeneity, with p < .1 considered signifi-
200cant. The impact of statistical heterogeneity was quantified
201using I2, which describes the percentage of total variation
202across studies attributable to heterogeneity rather than
203chance [21]. An I2 value of � 75% was considered as signifi-
204cant heterogeneity.

205Results

206Study selection

207A total of 298 studies were identified from the resources
208described above. With duplicate removal, title screening,
209and a rigorous abstract and full-text review as per our
210inclusion criteria, a total of three open-label CTs met
211requirements for qualitative review (Fig. 1) [22–24]. We
212could not proceed for a quantitative review (meta-
213analysis) because of substantial heterogeneity between
214articles.

215Study characteristics

216Of the three CTs, two were available as full-text articles,
217whereas one was presented as a meeting abstract. A total
218of nine patients were therefore included in our study, with
219a mean age of 10.7 ± 5.7 years. Mean pre-infusion Hb, neu-
220trophils, and Plts were 11.0 ± 1.6 (2 studies), 1,181 ± 525,
221and 61.1 ± 28.7, respectively. An average of 0.75 ± 0.4 (me-
222dian, 0.71; 0.2–1.3) CD34+ cells were collected (2 studies)
223and transduced with an overall VCN of 0.59 ± 0.6 (2 studies).
224Shared features between these studies included patients
225with a FANCAmutation using an LV vector for GT; gene edit-
226ing was not reported in any study. A limited follow-up (FU)
227period was reported in two of the studies. None of the three
228articles reported any SAEs from the investigational therapy,
229and there were no cytogenetic abnormalities reported in
230two studies after infusion. Neither symptom-free survival
231nor median survival rates were determined as no mortality
232was reported for any of the nine patients during their FU;
233also, no patients required HCT after GT, indicating a posi-
234tive response to GT as a safe and low toxicity management
235solution for FA.
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236 The age range of participants in the study of Rio et al.
237 [22] and Kelly et al. [23] was narrower compared with that
238 in the study cohort of Adair et al. [24], with a gap of
239 2.4 years (7.6–5.2), 2.4 (15.5–13.1), and 12 (22–10),
240 respectively. Whereas Kelly et al. [23] used two cycles of
241 GT, others used one cycle of transduction, demonstrating
242 an improvement in the methods and efficacy of GT over
243 the years.
244 A common finding was increased survival of CFCs to MMC,
245 which reflects chromosomal stability after transduction, as
246 chromosomal fragility to this DNA cross-linking agent is a
247 gold standard test for FA [25]. Kelly et al. [23] reported
248 an average CFC survival after MMC (10 nM) administration

249of approximately 45%, in comparison to 31% in Rio et al.’s
250[22] study; however, these could not be compared statisti-
251cally. All three studies had used different cell lines for the
252transduction process; hence, a true comparison of CFC sur-
253vival could not be made. Also, age did not seem to be a fac-
254tor in considering comparison of CFC survival after MMC
255administration.
256FU hematological parameters were not available numer-
257ically in the work of Rio et al. [22] and Adair et al. [24], so it
258was not possible to statistically compare improvements in
259individual parameters. However, a 1-year FU of most
260patients showed stabilization in blood lineages. Table 1
261summarizes all three studies.

Fig. 1 PRISMA flowchart. Note. PRISMA = Preferred Reporting Items for Systematic Reviews and Meta-Analyses.
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Table 1 Summary of the three included studies.

Variables Study 1 Study 2 Study 3

Title Successful engraftment of
gene-corrected
hematopoietic stem cells
in nonconditioned
patients with Fanconi
anemia

Stem cell collection and gene
transfer in Fanconi anemia

Gene therapy for Fanconi
anemia in Seattle: clinical
experience and next steps

Authors Rio et al. Kelly et al. Adair et al.
Year of publication 2019 2007 2016
Journal of publication Nature Medicine Molecular Gene Therapy Blood. Conference: 58th

Annual Meeting of the
American Society of
Hematology, ASH 2016

Study design Clinical trial Clinical trial Clinical trial
Full text available Yes Yes No (Abstract)
Sample size 4 3 2
Mean age (y) 5.85 ± 1.6 13.7 ± 1.6 16.0 ± 8.5
Cryopreservation

Cell mobilization

Yes (2 patients)
Yes (all; G-CSF and
Plerixafor)

Yes (1 patient)
Yes (1 patient; G-CSF)

No
No

Baseline mean

Hb (g/dL)

Neutrophils (/µL)
Plts (�103/µL)
CD34+ cells (106/kg)

CFC survival to 10 nM MMC (%)

11.3 ± 0.9
1,235 ± 472
48.0 ± 21.8
0.833 ± 0.3
0.025

10.7 ± 2.5
1,423 ± 672
76.0 ± 40.1
0.183 ± 0.2
0.0

NP
710 ± 56.7
61.0 ± 29.7
NP
NP

Vector used

(specific subtype)

Lentiviral
(PGK-FANCA-WPRE
lentiviral)

Lentiviral
(MSCV-FANCA lentiviral)

Lentiviral
(NP)

LV transduction 3 � 108 IU/mL NP 10 IU/cell
VCN 0.35 ± 0.2 NP 1.08 ± 1.1
Transduced/infused mean

CD34+ cells (105/kg)

CFCs (/kg)

TNC (105/kg)

2.6 ± 1.07
46.0 � 103 ± 76.1 � 103

NP

NP
NP
2.83 ± 2.1

NP
30.7%
NP

No. of transductions 1 2 1
Mean CFC survival after MMC

administration after gene

therapy (10 nM) (%)

31.0 44.7 NP

Follow-up period 18–30 mo 12 mo NP
Follow-up cytogenetic

abnormalities

None None NP

Serious adverse effects of

investigational therapy

None None None

FU: blood cell lines

improvement: (numerical/

description):

(Hb (g/dL)

Neutrophils (/µL)
Plts (�103/µL)
Stabilization

No

Yes

Yes (transient)
6 mo after infusion:
13.5 ± 0.7
NP
90.0 ± 28.3
Yes

NP

Yes

Note. CFCs = colony forming cells; FU = follow-up; Hb = hemoglobin; LV = lentiviral; mo = month; NP = not provided; Plts = platelets;
TNC = total nucleated cells; VCN = vector copy number.
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262 Risk of bias

263 With no randomized, case–control, or cohort studies avail-
264 able, assessment of risk of bias showed a poor score in many
265 domains, with the overall quality of our review being low,
266 typical of newer strategies (Fig. 2). Furthermore, as we only
267 had three articles, we were unable to assess the publication
268 bias of our studies.

269Results of individual studies

270Rio et al. [22] (NCT03157804, ClinicalTrials.gov)

271In this study [22], four male patients, with a mean age of
2725.85 ± 1.6 years, participated, as they met the inclusion cri-
273teria of at least one hematological parameter: Hb > 8, neu-
274trophils > 750, or Plts > 30,000. No patient had been
275transfused for 3 months prior to being treated with mobiliz-
276ing drugs. The mean baseline values for Hb, neutrophils, and

Fig. 2 Risk of bias assessment.
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277 Plts were 11.3 ± 0.9, 1,235 ± 472, and 48.0 ± 21.8, respec-
278 tively. The mean baseline BM CD34+ cells and CFCs were
279 0.833 ± 0.3 and 3.48 ± 2.1, respectively. In addition, 118.0
280 ± 117.0 bone marrow CD34+ cells/µL were available at GT.
281 A mean of 2.6 ± 1.07 CD34+ cells (105)/kg and 46.0 ± 76.1
282 CFCs (103)/kg were infused, with LV transduction of
283 3 � 108 IU/mL and an average VCN/cell of 0.35 ± 0.2. There
284 were no cytogenetic abnormalities at 12 and 24 months FU.
285 Patient 3 received prophylactic platelet transfusion after
286 GT, at days 32 and 36 and at months 12 and 18, whereas
287 other patients had stable, although low, Plt counts. Gene
288 markers in peripheral blood leukocytes, B-lymphocytes,
289 and BM increased progressively throughout FU at regular
290 intervals as shown in Table 2.
291 In a recent update, a higher level of gene marking was
292 associated with a higher survival of CFC to MMC, up to 70%
293 at 3-year FU, and also lower levels of chromosomal break-
294 age. Hb levels for two patients had increased to a normal
295 healthy range, and no genotoxic events had been reported.

296An additional five patients were recruited in this study, who
297were transduced with 50,000–1.6 � 106 CD34+ cells/kg.
298Preliminary results include confirmation of gene corrected
299PB cells, with a similar pattern in the levels of gene marking
300with the initial four patients. Two of these patients,
301after � 1-year FU, have demonstrated evidence of engraft-
302ment, as shown by increases in PB VCNs [26–28].

303Kelly et al. [23] (NCT00272857 ClinicalTrials.gov)

304In this study [23], three patients (mean age, 13.7
305± 1.6 years) were recruited. Eligibility criteria included a
306diagnosis of FA genotype A (FA-A), age > 1 year, no evidence
307of leukemia or myelodysplastic syndrome, and > 1 � 105

308CD34+ cells/kg available for in vitro gene correction. One
309patient underwent cryopreservation, whereas another
310received granulocyte colony-stimulating factor (G-CSF) for
311stem cell mobilization. The mean baseline values for Hb,
312neutrophils, and Plts were 10.7 ± 2.5, 1,423 ± 672, and
31376.0 ± 40.1, respectively. This study reported a mean post-

Table 2 Details of Rio et al. [22] study.

Variables Patient 1 Patient 2 Patient 3 Patient 4

Age at HSC gene therapy 5.2 7.6 4.0 6.6
Mutation (protein) FANCA:c295C > T; p.

Gln99*
(truncated protein)

FANCA;
c.1115_1118delTTGG;
p.V372AfsX42

FANCA; c295C > T;p.
Gln99*
(truncated protein)

FANCA; exon38:
c.3788_3790del;
p.Phe1263del &
exon29:
c.2851C > G; p.
Arg951Gly)

Baseline Hb (g/dL) 10.5 10.8 12.5 11.3
Baseline neutrophils (/

µL)
1,600 900 1,680 760

Baseline Plts (�103/µL) 29 46 38 79
Baseline bone marrow

CD34+ cells (/µL) at GT
CD34+ cells (106)/kg

135
0.55

25.1
0.71

276.1
1.30

34.1
0.77

Baseline CFCs (/µL)
Survival to MMC (10 nM)

(%)

2.81
0.1

0.8
0.0

5.25
0.0

5.05
0.0

Cryopreservation Yes Yes No No
Cell mobilization G-CSF and Plerixafor
Transduced/infused:

CD34+ cells (105)/kg

2.5 1.6 2.2 4.1

LV transduction (IU/mL) 3.0 � 108

Transduced CFCs (103)/

kg

14.0 ± 2.9 7.3 ± 0.88 2.8 ± 0.4 160 ± 12.0

VCN/cell (total colonies) 0.45 0.24 0.17 0.53
CFC survival after MMC

administration (10 nM)

(%)

70 (24 mo) 20 (24 mo) 30 (24 mo) 4 (12 mo)

Cytogenetics No abnormalities (24 mo for Patients 1 and 3; 12 mo for Patients 2 and 4)
Gene marking at follow-

up (latest)

55% in PBL and 70% in BL
(30 mo)
43.5% in BM (24 mo)

2–9% in PBL and 15–
25% in BM (24 mo)

4–6% in PBL (30 mo)
8–20% in BM (24 mo)

5–17% in PBL (18
mo)
4–8% in BM (12
mo)

Note. BL = B-lymphocytes; BM = bone marrow; mo = month; CFCs = colony forming cells; G-CSF = granulocyte colony-stimulating factor;
Hb = hemoglobin; LV = lentiviral; PBL = peripheral blood leukocytes; Plts = platelets.
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Table 3 Details of Kelly et al. [23] study.

Variables Patient 1 Patient 2 Patient 3

Age at HSC gene therapy 13.1 12.5 15.5
Cryopreservation No Yes No
Cell Mobilization G-CSF NR None
Baseline Hb (g/dL) 11.8 7.8 12.5
Baseline neutrophils (/µL) 780 2,120 1,370
Baseline Plts (�103/µL) 94 30 104
Baseline CFC survival to MMC

(10 nM) (%)

0 0 0

Post-harvest and post-CD34+
selection: total CD34 (106)/kg

0.4 1.3 0.2

Cell yield post-transduction and

84 hours in culture (%)

82 5 110

Total nucleated cells infused

(105)/kg:

4.5 0.5 3.5

Pro-virus detected after

infusion

No N/Aa (At 2 and 4 weeks after infusion;
none in the BM)

CFC Survival after MMC

administration (10 nM) (%)

40 46 48

Peak improvements in blood cell

counts (months after GT):

Hb (g/dL)

Plts (�103/µL)
Between 13 and 14 (2)
Between 110 and 120 (1)

N/A Between 14 and 15 (3)
Between 130 and 140 (1)

6 mo after infusion

Hb (g/dL)

Plts (�/µL)
13
70

N/A
14
110

1 y follow-up

After infusion

Approximately 1 g increase in Hb
for 10 mo
Transient increase in platelets
No changes in WBCs
No cytogenetic abnormalities
(including FISH studies)
No morphological changes

N/A Variable increase in Hb, that
peaked at 3 mo
Increase in platelets that peaked
at 1 mo after infusion
No changes in WBCs
No cytogenetic abnormalities
(including FISH studies)
No morphological changes

Note. FISH = fluorescent in situ hybridization; G-CSF = granulocyte colony-stimulating factor; Hb = hemoglobin; GT = gene therapy; N/
A = not applicable; Plts = platelets; WBC = white blood cells.
a Patient 2 who underwent cryopreservation was not transduced with autologous products due to the poor in vitro survival of previously

cryopreserved cells.

Table 4 Details of Adair et al. [24] study.

Variables Patient 1 Patient 2

Age at HSC gene therapy 22 10
Mutation FANCA; c1827-1 G > A FANCA; exon6-31del
Conditioning (prior to infusion) No
Baseline Hb (g/dL) NP NP
Baseline neutrophils (/µL) 500–1,000

750 (mean)
670

Baseline Plts (�103/µL) 40 82
Total CD 34 + cells collected/106 (BM volume in L) 9.4 (1.1) 30.6 (0.4)
LV transduction (IU/cell) 10
VCN (/cell) 0.33 1.83
Transduced CFC/kg (%) 18.4 43.0
Post-infusion cell counts NP NP

Note. BM = bone marrow; CFCs = colony forming cells; Hb = hemoglobin; HSCs = hematopoietic stem cells; LV = lentiviral; VCN = vector
copy number.
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314 harvest and CD34+ selection of 0.183 ± 0.2 cells (106)/kg,
315 and an average of 65.7% cell yield after transduction and
316 84 hours in culture. All patients received a TNC infusion of
317 approximately 2.83 ± 2.1 (105)/kg, whereas the mean CFC
318 survival after MMC administration (10 nM) was 44.7%. On
319 FU, there were no 12-month cytogenetic abnormalities in
320 the two patients infused, and 6 months mean post-infusion
321 Hb and Plts values were 13.5 ± 0.7 and 90 ± 28.3, respec-
322 tively, as shown in Table 3.

323 Adair et al. [24] (NCT01221018 ClinicalTrials.gov)

324 As this was an abstract [24], only limited data were avail-
325 able. The mean age of the two patients included was 16.0
326 ± 8.5 years. Bone marrow was harvested to collect unmanip-
327 ulated HSCs and did not include either cryopreservation or
328 stem cell mobilization prior to cell infusion. Baseline neu-
329 trophils and Plts were 710 ± 56.7 and 61.0 ± 29.7, respec-
330 tively. A mean of 20.0 ± 15 total (�106) CD34+ cells were
331 collected from 0.75 L of BM. LV transduction was 10 IU/cell,
332 and an average of 30.7% transduced CFC/kg was achieved
333 with a mean VCN/cell of 1.08 ± 1.1 as shown in Table 4.
334 The infusion was tolerated well, and stable blood cell
335 counts were maintained post GT, but showed progressively
336 lower levels of transduced cells in peripheral blood.

337 Discussion

338 We aimed to review the impact of GT reported for FA
339 patients. Only three studies met our inclusion criteria,
340 which highlights the need for further research on the effects
341 of GT for FA. Another CT identified was conducted two dec-
342 ades ago, hence considered beyond the scope of our a priori
343 inclusion criteria [29]. In this trial, four patients were
344 recruited, out which three patients received three or four
345 cycles of gene transfer, each with two or three infusions
346 of HSCs transduced ex vivo with normal FANCC genes based
347 retroviral vectors. There was a significant increase in HSC
348 colonies in vitro and a transient improvement in BM
349 cellularity.
350 All published and ongoing GT CTs for FA have used retro-
351 viral, for example, LV, mediated gene transfer. However,
352 there have been rapid developments in other methods of
353 GT, with a specific focus on gene editing. Site-specific
354 DNA double-strand breaks are introduced using specific
355 endonuclease enzymes, after which they are repaired by
356 either non-homologous end joining (NHEJ) through gene
357 mutations via insertion–deletion (indel) disruptions, or
358 homology-dependent repair (HDR), which uses donor DNA
359 templates for precise gene modification. Currently used
360 enzymes include zinc finger nucleases (ZFNs), transcription
361 activator-like effector nucleases (TALENs), and canonical
362 clustered regularly interspaced short palindromic repeats
363 (CRISPR)-associated protein-9 nuclease (Cas9). Thus, the
364 specific mutation is corrected in its original genomic locus,
365 allowing for targeted delivery and tissue-specific regulatory
366 response [30–32].
367 Both ZFNs and TALENs-based gene editing in FA have
368 reported that integration of the transgene adeno-
369 associated virus integration site 1 (AASV1) can correct
370 MMC hypersensitivity, and therapeutic gene editing is possi-
371 ble in CD34+ cells from FA-A patients [33,34]. Meanwhile,

372CRISPR-Cas9-based gene editing, with some advantages over
373ZFNs and TALENs [35], has demonstrated immense thera-
374peutic potential by generating induced pluripotent stem
375cells for gene correction and differentiation into adult stem
376cells [36]. Moreover, murine studies have shown that
377CRISPR-Cas9 mediated gene editing is effective in restoring
378FANCF function with increased survival in the presence of
379MMC, whereas NHEJ-mediated gene editing via CRISPR-
380Cas9 has been very efficient in restoring mutant coding
381frames across multiple FA groups, with corrected FA-HSCs
382having a proliferative advantage [37,38]. Although this
383approach does appear promising, there has been an associ-
384ation of imperfect DNA repair with deleterious indels, along
385with a limited editing efficiency [39]. Most recently, trans-
386fusion independence was achieved in two patients of
387transfusion-dependent b-thalassemia at 15 and 9 months
388after GT (NCT036655678, ClinicalTrials.gov), and in one
389patient of severe sickle cell disease, who was also free of
390vaso-occlusive crises at 9 months after GT (NCT03745287,
391ClinicalTrials.gov) [40,41].
392In addition, cytosine and adenine base editors as well as
393novel prime editors, both versions of the DNA double-strand
394breaks free CRISPR-Cas9 genomic editing tool, were devel-
395oped. Prime editors, as a ‘‘search-and-replace” method,
396are CRISPR-Cas9 nickase/nCas9 (H840A)-reverse transcrip-
397tase fusions that use designed prime editing RNAs (pegRNAs)
398[42,43]. When comparing base editing (CRISPR) versus prime
399editing, the preclinical work by Lui’s team [44] has demon-
400strated prime editing to offer more targeting flexibility and
401a greater editing precision, while having a higher or similar
402editing efficiency compared with HDR and a lower indel by-
403product generation [45]. Thus, we hope this newer tech-
404nique of prime editing will prove to be potentially effica-
405cious and safe for the treatment of monogenic diseases,
406including FA, and emphasize the essential need for and
407urgency of gene edited human trials for FA.
408Besides a small number of patients, absence of long-term
409FU was the major limitation of our study. We were also
410unable to assess QoL after GT. In addition, a metaregression
411analysis could not be conducted because of the limited
412availability of patient data, and absence of RCTs for GT ver-
413sus HCT for FA, which would have provided a more reliable
414insight into benefits and adverse effects of this interven-
415tion. Meanwhile, HCT has evolved significantly over the
416years, with longer survival rates and long-term mortality
417benefits, attributable to improved grafting techniques, T-
418cell-depleted grafts, and reduced intensity conditioning
419regimens [46]. Advancements in the approach to HCT for
420FA have allowed for 100% engraftment, acute GVHD
421of < 10%, and a 94% survival; meanwhile, Anur et al. [47]
422demonstrated 5- and 10-year survival rates to be 100% and
42384%, respectively [48].
424With promising initial results, multiple GT CTs have been
425initiated, from the FANCOLEN-2 trial in the United States
426(NCT04248439, ClinicalTrials.gov) [49], to a global Phase 2
427study aiming to treat patients in earlier stages of BMF with
428infusion of higher numbers of corrected HSCs
429(NCT04069533, ClinicalTrials.gov) [50]. Early Phase 1 data
430(NCT03814408, ClinicalTrials.gov) described two patients
431(aged 5 and 6 years) with CD34+ cells transduction from an
432LV carrying the FANCA gene. No adverse events related to
433GT occurred. Both patients had stabilizing cytopenias
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434 6 months after infusion, as well as increasing BM-MMC resis-
435 tance. Continuous monitoring is being done to assess the
436 safety and efficacy of GT [51]. Despite multiple challenges,
437 there is an essential need for future genetic-edited HSC CTs
438 for FA (Table 5), with translational relevance of prime
439 importance since it can be life-changing for FA patients.

440 Conclusion

441 In summary, GT seems to be a safe and promising manage-
442 ment strategy for FA, with beneficial clinical outcomes in
443 the future. However, further research must be conducted
444 to study the long-term effects of GT, for conclusive evi-
445 dence of the potential to become a standard form of treat-
446 ment. Novel studies involving gene editing techniques also
447 need to be explored, in which HCT is the only currently
448 known curative therapy.
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