7 research outputs found

    Recovery processes and dynamics in single and interdependent networks

    Full text link
    Systems composed of dynamical networks - such as the human body with its biological networks or the global economic network consisting of regional clusters - often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread, and recovery. Here we develop a model for such systems and find phase diagrams for single and interacting networks. By investigating networks with a small number of nodes, where finite-size effects are pronounced, we describe the spontaneous recovery phenomenon present in these systems. In the case of interacting networks the phase diagram is very rich and becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions, and two forbidden transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyze an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model

    Multiple Tipping Points and Optimal Repairing in Interacting Networks

    Get PDF
    Systems that comprise many interacting dynamical networks, such as the human body with its biological networks or the global economic network consisting of regional clusters, often exhibit complicated collective dynamics. To understand the collective behavior of such systems, we investigate a model of interacting networks exhibiting the fundamental processes of failure, damage spread, and recovery. We find a very rich phase diagram that becomes exponentially more complex as the number of networks is increased. In the simplest example of n=2n=2 interacting networks we find two critical points, 4 triple points, 10 allowed transitions, and two "forbidden" transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To support our model, we analyze an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model.Comment: 7 figures, typos corrected, references adde

    Global Importance Analysis: An Interpretability Method to Quantify Importance of Genomic Features in Deep Neural Networks

    Get PDF
    ABSTRACT Deep neural networks have demonstrated improved performance at predicting the sequence specificities of DNA- and RNA-binding proteins compared to previous methods that rely on k -mers and position weight matrices. To gain insights into why a DNN makes a given prediction, model interpretability methods, such as attribution methods, can be employed to identify motif-like representations along a given sequence. Because explanations are given on an individual sequence basis and can vary substantially across sequences, deducing generalizable trends across the dataset and quantifying their effect size remains a challenge. Here we introduce global importance analysis (GIA), a model interpretability method that quantifies the population-level effect size that putative patterns have on model predictions. GIA provides an avenue to quantitatively test hypotheses of putative patterns and their interactions with other patterns, as well as map out specific functions the network has learned. As a case study, we demonstrate the utility of GIA on the computational task of predicting RNA-protein interactions from sequence. We first introduce a convolutional network, we call ResidualBind, and benchmark its performance against previous methods on RNAcompete data. Using GIA, we then demonstrate that in addition to sequence motifs, ResidualBind learns a model that considers the number of motifs, their spacing, and sequence context, such as RNA secondary structure and GC-bias

    Statistical correction of input gradients for black box models trained with categorical input features

    Get PDF
    Gradients of a deep neural network’s predictions with respect to the inputs are used in a variety of downstream analyses, notably in post hoc explanations with feature attribution methods. For data with input features that live on a lower-dimensional manifold, we observe that the learned function can exhibit arbitrary behaviors off the manifold, where no data exists to anchor the function during training. This leads to a random component in the gradients which manifests as noise. We introduce a simple correction for this off-manifold gradient noise for the case of categorical input features, where input values are subject to a probabilistic simplex constraint, and demonstrate its effectiveness on regulatory genomics data. We find that our correction consistently leads to a significant improvement in gradient-based attribution scores

    ResidualBind: Uncovering Sequence-Structure Preferences of RNA-Binding Proteins with Deep Neural Networks

    No full text
    Deep neural networks have demonstrated improved performance at predicting sequence specificities of DNA- and RNA-binding proteins. However, it remains unclear why they perform better than previous methods that rely on k-mers and position weight matrices. Here, we highlight a recent deep learning-based software package, called ResidualBind, that analyzes RNA-protein interactions using only RNA sequence as an input feature and performs global importance analysis for model interpretability. We discuss practical considerations for model interpretability to uncover learned sequence motifs and their secondary structure preferences

    ARTICLE Multiple tipping points and optimal repairing in interacting networks

    No full text
    Systems composed of many interacting dynamical networks-such as the human body with its biological networks or the global economic network consisting of regional clusters-often exhibit complicated collective dynamics. Three fundamental processes that are typically present are failure, damage spread and recovery. Here we develop a model for such systems and find a very rich phase diagram that becomes increasingly more complex as the number of interacting networks increases. In the simplest example of two interacting networks we find two critical points, four triple points, ten allowed transitions and two 'forbidden' transitions, as well as complex hysteresis loops. Remarkably, we find that triple points play the dominant role in constructing the optimal repairing strategy in damaged interacting systems. To test our model, we analyse an example of real interacting financial networks and find evidence of rapid dynamical transitions between well-defined states, in agreement with the predictions of our model
    corecore