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Multiple tipping points and optimal repairing in
interacting networks
Antonio Majdandzic1, Lidia A. Braunstein1,2, Chester Curme1, Irena Vodenska1,3, Sary Levy-Carciente1,4,

H. Eugene Stanley1 & Shlomo Havlin1,5

Systems composed of many interacting dynamical networks—such as the human body with

its biological networks or the global economic network consisting of regional clusters—often

exhibit complicated collective dynamics. Three fundamental processes that are typically

present are failure, damage spread and recovery. Here we develop a model for such systems

and find a very rich phase diagram that becomes increasingly more complex as the number of

interacting networks increases. In the simplest example of two interacting networks we find

two critical points, four triple points, ten allowed transitions and two ‘forbidden’ transitions, as

well as complex hysteresis loops. Remarkably, we find that triple points play the dominant

role in constructing the optimal repairing strategy in damaged interacting systems. To test our

model, we analyse an example of real interacting financial networks and find evidence of rapid

dynamical transitions between well-defined states, in agreement with the predictions of our

model.
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M
ost real networks are not isolated structures but interact
with other network structures. As a result, much
research has been focused recently on the dynamics

of interdependent1–8 and multilayer9–11 networks. Recent studies
on network repair12–14 have shown the importance of recovery of
nodes as a process that leads to reverse transitions, hysteresis
effects and such phenomena as spontaneous recovery12,15.

The cardiovascular and nervous systems in the human body are
examples of two dynamically interacting physiological networks16.
Diseases often result from complex pathological conditions that
involve a dynamical interaction with positive or negative feedback
between different functional subsystems in the body. Similarly, in
the global economy there is a hierarchy of clustered and tightly
connected countries, often grouped geographically, which are
further interconnected to one large global interacting economic
and financial network17–19. To understand the behaviour of these
systems using network science, we develop a model of interacting
networks with nodes that can recover from failure and we examine
the resulting phase diagram.

Our model of a generic system consisting of interacting
dynamical networks captures the important events found in
real-world interacting networks, that is, node failure20–23,
systemic damage propagation24 and node recovery12,15,25. We
first analiticaly solve the model in the mean field theory (MFT)
approximation and confirm the results in numerical simulations.
The phase diagram of this system is characterized by a number of
phases, phase transition lines and tipping points26–29. We show
that triple points play a critical role in devising an optimal
strategy for efficient repairing of interconnected network systems.
By analysing the network of credit default swaps (CDSs) of
sovereign countries, we demonstrate the application of our model
to a real system and show that all of its parameters are
experimentally accessible.

Results
Model. The structure of our system for the n¼ 2 case is modelled
as follows. We start with two isolated networks, network A and
network B, and for simplicity we assume that both networks have
the same number of nodes N and the same degree distribution f(k)
(these assumptions can be relaxed but the results stay qualitatively
similar). We assume that within each network the nodes are
randomly connected. Now, to allow networks A and B to interact,
we introduce interdependency links that connect nodes across the
two networks2. This can be achieved in different ways and we use a
simple one-to-one dependency: each node in network A is
dependent on exactly one node in network B and vice versa. The
pairs of nodes of both networks are chosen randomly.

The dynamic behaviour of our system is governed by two
categories of event—failure and recovery—and we assume that
every node is in either a failed or an active state. Node failure can
result from internal failure or from the spread of damage from
neighbour nodes in either the same network or the interdepen-
dent network. We thus assume that there are three ways a node
can fail. The first way is the internally induced failure, when a
node’s internal integrity has been compromised, for example, an
organ in the body can fail due to a malfunction within the organ
or a company can fail due to bad management. The second type
of failure is externally induced failure through failure propagation
due to connections with failed nodes within the node’s own
network. Finally, there is a failure induced through the
dependency link as a result of being dependent on a failed node
from another (opposite) network. Apart of these three types of
failures, we assume the existence of associated simple recovery
processes for every type of failure. We specify quantitatively each
of these processes below.

For internal failures (I), we assume that in both networks any
node can fail due to internal problems, independent of other
nodes. For each node in network A we assume that there is
probability pAdt that the node will fail internally during any time
period dt. The equivalent parameter in network B is pB.

Every node in network A and network B is connected by links to
nearby nodes in its own network. These nodes constitute the
node’s neighbourhood. The number of links a node has within the
network indicates its degree or connectivity, denoted by k. If a large
number of nodes in a node’s neighbourhood have failed, that is, if
the neighbourhood is substantially damaged, we assume that the
probability that the node itself will fail is increased. This is
modelled by external failures (E). As in refs 12,30, we use a
threshold rule to define a substantially damaged neighbourhood,
which is a neighbourhood containing rm active nodes, where m is
a fixed integer threshold. If node j has 4m active neighbours
during time dt, we consider its neighbourhood to be ‘healthy’ and
there is no risk of external failure. On the other hand, if j has rm
active neighbours during time dt, there is a probability rA dt
(for network A) or rB dt (for network B) that node j will externally
fail. For certain systems it is more appropriate to define a fractional
threshold 0rmfrac r1 as in ref. 15. That is, the minimum number
of active nodes as a requirement for a ‘healthy’ neighbourhood is
replaced by a minimum fraction of active nodes in the
neighbourhood. In the example of random regular network that
we consider below, both are equivalent and related by m¼ kmfrac.

In the case of two interdependent networks (A and B), we
assume that each node in the first network is dependent on a
node in the second network via an interdependent link and vice
versa. We assume that if one node in the pair fails, there is a finite
(but not 100%) probability, rd dt, that during time dt the other
node in the pair will fail as well (dependency failure: type D). This
represents the probability that the damage will spread through the
interdependency link.

We also assume that there is a reversal process, a recovery from
each of these three types of failure. A node recovers from an
internal failure after a time period t 6¼0, it recovers from an
external failure after time t0 and from a dependency failure after
time t00. In simulations, and without loss of generality, we use
t¼100 and for simplicity we set t0¼t00¼1, to take into account the
assumption that real-world systems usually require a longer time
period to recover from internal problems (physical faults) then
from a lack of environmental support. However, changing the
numerical values does not introduce any qualitative difference.

For the node activity notation, we assume that every node is in
one of two states: active or failed. A node is considered active in
the observed moment, if it is not experiencing internal (I),
external (E) or dependency (D) failure.

Mean field theory. We characterize this system by studying the
order parameters chosen naturally as the fraction of active nodes
in network A and network B, zA and zB, respectively. To simplify
the calculation, however, we first concentrate on the com-
plementary and equally intuitive fraction of failed nodes aA and
aB, in networks A and B, respectively (aA¼ 1� zA, aB¼ 1� zB).

Using the MFT presented in Methods, we obtain two coupled
equations that connect aA and aB, which the system must satisfy
in the equilibrium

aA ¼ p�Aþ rdaB 1� p�A
� �

þ
X

k

f kð ÞF k; aAð Þ rA�p�ArA� rArdaBþp�ArArdaB
� �

ð1Þ

aB ¼ p�Bþ rdaA 1� p�B
� �

þ
X

k

f kð ÞF k; aBð Þ rB� p�BrB� rBrdaAþ p�BrBrdaA
� �

ð2Þ
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Here F k; xð Þ¼
Pm

j¼0 ð
k
j
Þxk� j 1� xð Þj and we have also intro-

duced simplifying parameters p�A � 1� e� pAt and
p�B � 1� e� pBt, to make the equations more elegant and to
reduce the number of parameters by replacing pA, pB and t that
appear as a product. We find that the parameters p�A and p�B are
very convenient to work with, because they correspond to the
fraction of internally failed nodes in network A and network B,
respectively.

Despite the seeming complexity of equations (1) and (2), it is
noteworthy that there are only two unknown variables, aA and aB,
and that all other parameters are fixed. These two equations
define two curves in the (aA, aB) plane.

Figure 1a shows a graphical representation of the curves for a
random regular31 network (in which all the nodes have the same
degree) with degree of k¼ 16 and threshold m¼ 8, for the
symmetric parameter values p�A¼p�B¼0:16, rA¼ rB¼ 0.60 and
rd¼ 0.15. The size of each network is N¼ 2� 104. The blue curve
is a graphical representation of equation (1) and the brown curve
is defined by equation (2). The curves, similar to two ‘ropes’,
create a ‘knot’ that can have up to nine intersections, representing
mathematical solutions of the system of equations. However, not
all of these solutions represent observable and stable physical
states. To see that, observe one of the curves in Fig. 1a, for
example, the blue curve described by equation (1). If we increase
damage done to network B (that is, we increase aB) and keep
everything else constant, some damage will undoubtedly spread
to network A. Thus, we expect that when aB is increased, aA must
also increase (it would be very unusual if one network improves
its activity as a result of damaging the other network). We
conclude that the parts of the blue and brown curve that produce
physical solutions are only those where aA and aB increase
together or decrease together along the curve. This elimination
leaves only four states in Fig. 1a that are stable (green circles),
whereas the other five states are unstable (red crosses), for this
particular choice of parameters. In simulated finite networks,
when the network system evolves according to the rules of the
model, at t¼ 0 we have a freedom to set initial conditions for the
activities. Systems initially prepared to have a pair of values
(aA, aB) corresponding to an unstable solution of equations (1)
and (2) will be disturbed by a small fluctuation of aA or aB, owing
to the system dynamics, and the values of aA or aB will rapidly

change until one of the stable states is reached. Systems that are
initially prepared to have values of aA or aB corresponding to a
stable solution will fluctuate around these values, until perhaps a
large finite fluctuation occurs and the system ‘jumps’ to another
stable state. In general, for any choice of parameters, we have
between one and four stable (physical) states. Figure 1b shows the
scenario for the same network system when p�A¼0:20, p�B¼0:24,
rA¼ rB¼ 0.60 and rd¼ 0.15. In this case we have two stable states
and one unstable state.

In the Methods, section ‘Additional phase diagrams’, we show
diagrams for zA¼ 1� aA for a range of different values of p�A and
all other parameters fixed. This MFT calculation agrees well with
the states that we observe in our simulations, as we will
demonstrate below.

The four stable solutions found above correspond to the
following four scenarios: ‘11’ or ‘up–up’, when there is high
activity in both network A and network B; ‘12’ or ‘up–down’
when there is high activity in network A and low activity in
network B; ‘21’ or ‘down–up’ when there is low activity in
network A and high activity in network B; and ‘22’ or
‘down–down’, when there is low activity in both network
A and network B.

Depending on the parameters, we obtain between one and four
stable states. Each of the states exists in a certain volume of the
multi-dimensional space of parameters. Results of the MFT
calculation for a particular set of parameters are presented in
Fig. 2a–d as a phase diagram with four layers. Figure 2 shows the
regions in which each of the four states exist in the (p�A, p�B)
parametric sub-space, when other parameters are fixed at values
rA¼ rB¼ 0.60 and rd¼ 0.15, with k and m remaining the same as
before.

For example, in Fig. 2a the green area indicates the region
where the 11 state exists. This state (phase) is bounded with a
smooth boundary of three colours. If the boundary is crossed
(by increasing p�A and p�B), the system makes a transition to state
12 (if the orange line is crossed), state 22 (if the blue line is
crossed) or state 21 (if the purple line is crossed). The arrows
indicate transitions. In Fig. 2a, there are two triple points (black
points) that mark the change in the transition type and where
three different states can exist. The blue area in Fig. 2b indicates
the 22 state. This layer of the phase diagram has two triple
points as well and three possible transitions (22-12, 22-11 and
22-21).

Figure 2c,d show the regions of state 21 (purple) and state 12
(orange), respectively. Each has two different transitions and one
critical point. For example, there are two possible ways out of
state 21 (Fig. 2c): by a transition to the 11 (green arrow) state or
the 22 (blue arrow) state. It is noteworthy that the different state
regions (Fig. 2a–d) are not disjoint sets but there is an overlap,
resulting in twofold, threefold or even fourfold hysteresis regions.

The state in which the system is found depends on the initial
conditions or the system’s past. There are a total of 10 different
transitions (11-12, 11-22, 11-21, 12-11, 12-22, 21-11,
21-22, 22-12, 22-21 and 22-11) that connect different
layers of the phase diagram (states 11, 12, 21 and 22),
much similar to elevators connecting different floors. Transitions
12-21 and 21-12 are the only missing (‘forbidden’) combina-
tions. Although regions 12 and 21 do overlap, there is no direct
transition connecting these two states. The set of all allowed and
forbidden transitions is presented in Fig. 2e. The total phase
diagram (all four layers on top of each other) is presented in
Fig. 3. Here, coloured lines represent the boundaries of four
states, with each colour corresponding to the boundary of one
state, for example, the green line is a boundary of the 11 state.
Rich critical phenomena with discontinuous hybrid phase
transitions and second-order transitions have been recently
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Figure 1 | Graphical representations of the mean field equations. (a) The

blue and brown curves represent equations (1) and (2), respectively, for

p�A¼p�B¼0:16, rA¼ rB¼0.60 and rd¼0.15, in a system with two

interdependent networks (k¼ 16, m¼ 8). There are nine intersections,

representing mathematical solutions for network activities aA and aB. Four

of them are stable solutions (green circles) representing physical states

that we also observe in our simulations and five are unstable solutions (red

crosses). (b) Example for p�A¼0:20, p�B¼0:24, rA¼ rB¼0.60 and rd¼0.15.

Here we obtain two stable solutions and one unstable solution. The two

stable solutions correspond to 11 state (both networks are at high activity)

and 22 state (both networks are at low activity).
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discovered in multiplex networks. In particular, Baxter et al.32

introduced weak bootstrap percolation and weak pruning
percolation in multiplex networks, which have potential
applications in infrastructure recovery and information security,
and can even provide a way to diagnose missing layers in a
multiplex network.

We next can examine the activity profile for various cross-
sections in the phase diagram. In Fig. 3 we choose two
representative cross-sections (dashed straight lines) to measure
activity zA¼ 1� aA as p�A and p�B change. The black dashed line is
defined by the equation p�B¼0:1þ 4=3p�A and the red dashed line
by p�B¼0:4� p�A. Figure 4a shows the activity measured in
simulations of network A as we move along the black dashed line,
changing both p�A and p�B, and preserving the relation
p�B¼0:1þ 4=3p�A. We perform simulations for various initial
conditions and find (Fig. 4a) three different states denoted by
green, orange and blue colours, which we identify as 11, 12 and 22
states, respectively. We find four different transitions: 11-12,
12-22, 12-11 and 22-12. The solid lines show the MFT
prediction (equations (1) and (2)) for the activity of network A.

The good agreement shows that the MFT correctly captures all
the properties of the system. We note that qualitative agreement
between the MFT and the simulations is better for higher values
of k, because for higher k the fluctuations are smaller, which
improves the accuracy of the MFT. Figure 4b shows the activity
when moving along the red dashed line. Here we obtain four
states and six different transitions.

The phase diagram of a system of n¼ 2 interacting networks
(Fig. 3) is much richer than the phase diagram of a single network
with damage and recovery12. The analytical results we presented
here for n¼ 2 can be generalized to n interacting networks in any
topological configuration, although as n increases they become
increasingly difficult to visualize. In general, a system with n
interacting networks can have up to 2n physical states.

The problem of optimal repairing. Knowing and understanding
the phase diagram of interacting networks enable us to answer
some fundamental and practical questions. A partially or
completely collapsed system of nZ2 interacting networks in
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Figure 2 | Four layers of the phase diagram and the transitions connecting them. (a) Region of 11 state, in green. Possible transitions are 11-12 (orange

line), 11-22 (blue line) and 11-21 (purple line). This layer of the phase diagram has two triple points, marked as black points. (b) Region of 22 state

(blue), with two triple points and three transitions. (c) Region of 21 state (purple), with two transition lines (to 11 and 22 state) that merge in a critical point.

(d) Region of 12 state (orange), with two transition lines (to 11 and 22 state) that merge in a critical point. (e) Illustration showing states (11, 12, 21 and 22)

with allowed (blue arrows) and forbidden (red line) transitions.
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which some of them are in the low activity state is a scenario
common in medicine, for example, when diseases or traumas
affect the human body and a few organs are simultaneously
damaged and need to be treated, and the interaction between the
organs is critical. It is also common in economics, when two or
more coupled sectors of the economy18 experience simultaneous
problems, or when a few geographical clusters of countries
experience economic difficulties. The practical question that
arises is: what is the most efficient strategy to repair such a
system? Many approaches are possible if resources are unlimited,
but this is usually not the case and we would like to minimize the
resources that we spend in the repairing process.

For simplicity, consider two interacting networks, both
damaged (low activity). Is repairing both networks simulta-
neously the more efficient approach, or repairing them one after
the other? What is the minimum amount of repair needed to
make the system fully functional again? In other words, what is
the minimum number of nodes we need to repair, to bring the
system to the functional 11 (‘up–up’) state, and how do we
allocate repairs between the two networks? An optimal repairing
strategy is essential when resources needed for repairing are
limited or very expensive, when the time to repair the system is
limited, or when the damage is still progressing through the
system, threatening further collapse, and a quick and efficient
intervention is needed.

We show below that this problem is equivalent to finding the
minimum Manhattan distance between the point in the phase
diagram where the damaged system is currently situated and the
recovery transition lines to the 11 region. The Manhattan distance
between two points is defined as the sum of absolute horizontal
and vertical components of the vector connecting the points, with
defined vertical and horizontal directions. It is a driving distance
between two points in a rectangular grid of streets and avenues.
In our phase diagram, it is equal to Dp�A

�� ��þ Dp�B
�� ��. It turns out

that two triple points of the phase diagram play a very important
role in this fundamental problem. We find that these special
points have a direct practical meaning and are not just a
topological or thermodynamic curiosity.

To show this, we start by making some simplifying but
reasonable assumptions. First, we assume that only internal

failures can be repaired by human hands, as these failures are
physical faults in nodes (any external and dependency failures
and recoveries are ‘environmental’, and are a spontaneous
recognition of the changing neighbourhood of a node). We
mentioned above that the parameters p�A and p�B correspond to
fractions of internally failed nodes in networks A and B,
respectively. This implies that the number of internally failed
nodes repaired in, say, network A, is directly proportional to the
change of p�A. Hence, repairing nodes in networks A and B means
decreasing p�A or p�B. We also assume that these repairs are done
fast enough that there is only a small probability that the newly
repaired nodes will internally fail again before the repair process
is completed. The total number of repaired nodes is therefore
Nrep¼N Dp�A

�� ��þ Dp�B
�� ��� �

and it is proportional to the Manhattan
distance between the starting and final point in the phase
diagram.

To optimize repairing we need to minimize this metric.
Figure 5 shows the solution to the minimization problem and a
detailed discussion is provided in the Methods section. The
different colours in Fig. 5 correspond to the different optimal
repair strategies, which depend on the failure state of the system.
If the system is initially at point S1, both networks are in a low
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‘window’ where all four states are possible.

0.2

0.4

0.6

0.8

1.0

0.0 0.05 0.10 0.15 0.20 0.25 0.30

12

11 MFT

Simul.

Transit.
(simul.)

0.2

0.4

0.6

0.8

1.0

0.0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

12 11

21
22

MFT

Simul.
Transit.
(simul.)

<
z A

>

pB*= 0.1 + 4/3 pA*

pA*

pA*

<
z A

>
pB*= 0.4 – pA*

a

b

Figure 4 | States with transitions and hysteresis loops for two activity

profiles. (a) Activity zA of network A, as measured in simulations (dots)

and predicted by MFT (solid lines), along the cross-section defined by the

black dashed line in Fig. 3. Parameters p�A and p�B are changed, preserving

the relation p�B¼0:1þ4=3p�A. Transitions are denoted by arrows. (b) Same
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Here we obtain four states and six different transitions, giving rise to more

complex hysteresis loops. Network parameters in all cases are (k¼ 16,

m¼8).
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activity state, that is, they are non-functional. Our goal is to
decrease p�A and p�B, and arrive to the region where the system is
fully recovered (the green region) by performing a minimal
number of repairs, that is, minimal Nrep. We find that for
any point in the red region there are actually two closest points
in the green region, at an equal Manhattan distance away
from the red region point. These two points are the triple
points R1 and R2 shown in Fig. 5, which also correspond to
the triple points in Fig. 2b. Although R1 may be closer to point
A than R2 by Euclidian distance, the Manhattan distance is
the same. Thus, two equally good repairing strategies are
available. One involves allocating more node repairs to
network A and the other allocating more repairs to network
B. For the yellow regions (points S2 and S3), the closest points
by Manhattan distance are R1 (for point S2) or R2 (for point S3).
Here, only one triple point represents the optimal solution.
It is noteworthy that the path samples in Fig. 5 are ‘zig-zag’ in
shape (to highlight that we are minimizing Dp�A

�� ��þ Dp�B
�� ��);

however, even when a diagonal path (direct straight line) to a
triple point is used, the Manhattan distance is the same. For the
dark blue regions (points S4 and S7), the optimal strategy is to
decrease p�B only, until the system is recovered. Similarly, for the
light blue regions (points S5 and S6), the optimal strategy is to
decrease only p�A.

From our optimal repairing strategy analysis we find that the
order of repair (the specific path taken between the initial point
and final point) does not affect the final result. Minimizing the
Manhattan distance only determines the optimal destination
point. Therefore, there is actually a set of paths corresponding to
equally optimal repairing processes.

States and transitions in real-world networks. In relatively small
networks (NE10–1,000) fluctuations are very large. Thus, in
small network systems exhibiting multistability it is possible to
observe phase flipping12,15,33 between different states. Figure 6a
shows the fraction of active nodes for both networks, in time, for
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Figure 5 | Optimal repairing strategies. The optimal repairing procedure

(least expensive in terms of the number of individual node repairs) depends

on the initial condition of the collapsed system. The total cost of repair is

Dp�A
�� ��þ Dp�B

�� �� and the problem of optimal repairing translates into finding

the minimal Manhattan distance from the point (in the phase diagram)

where the collapsed system is initially situated (Si) to the nearest border of

the green region where it becomes fully functional. For a system having the

initial condition within the red section (for example, point S1), there are two

solutions: it is equally optimal to reach any of the two triple points R1 and

R2 by decreasing p�A and p�B. For the systems starting in the yellow regions,

it is optimal to reach only one triple point, R1, for the sector containing point

S2, or R2 for the sector containing point S3. Starting in the dark blue regions

it is optimal to decrease p�B only, that is, repairing only network B. Similarly,

in the light blue regions it is optimal to decrease p�A only. Triple points play a

crucial role when both networks are initially significantly damaged (red and

yellow regions).
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failure parameters p�A¼p�B¼0:21, rA¼ rB¼0.60 and rd¼0.15 shows the switching of the system between four different states. We can easily identify four

collective states: 11, 22, 12 and 21. (b) Dynamics of two CDS geographical networks consisting of 17 European and 8 Latin American countries, showing very

similar behaviour: individual networks switching between well-defined high-activity and low-activity states, as well as correlated collective behaviour of the

two networks in interaction. We identify collective states 11, 22, 12 and 21, and mark them with connected black ovals. It is noteworthy that, as the CDS

value grows with risk, a higher activity in a CDS network corresponds to bad economic news.
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a symmetric choice of parameters, p�A¼p�B¼0:21, rA¼ rB¼ 0.60
and rd¼ 0.15, when each network has only N¼ 100 nodes. Large
fluctuations cause the system to jump between the different states
allowed for this set of parameters. It is noteworthy that
interdependent links cause the two networks to have partially
dependent and correlated dynamics. Very often a transition in
one network triggers a transition in the other. In Fig. 6a we can
identify examples of all four global states: 22, 11, 21 and 12. For
example, at time tE400 both networks are in the high activity
state (11), whereas at tE620 network A is in the low activity and
network B in the high activity state (21).

As many real-world interacting network systems have a small
number of nodes, in those systems we can potentially uncover
dynamics similar to what we observe in our model networks. As
an example of a real system, we investigate the interacting
sovereign 5-year CDS system, consisting of 25 European Union
(EU) and Latin American countries (see Methods for the full list
of countries) that began to issue the CDSs from 2005. We divide
countries into two groups on a geographical basis: 8 countries
belong to the Latin American group and 17 belong to the
European Union group. Sovereign CDSs are financial instru-
ments, for which the value reflects the probability that the
reference country will default on its debts. Each country has a
CDS value assigned and this value changes in time reflecting the
economic news about this country and the perceived risk of
default, which results in a time series that we can observe. CDSs
are highly sensitive to important economic news, positive or
negative. There is also a significant contagion and influence
between the countries, especially between those with strong
economic ties, which is reflected in the correlation between their
CDSs. These characteristics make the CDS signals a candidate for
modelling using our interacting network approach.

We can draw a parallel between the CDS system and our model
network if we assume that each country (with its associated CDS
signal) can be represented as a node, which has connections
(links) to other countries within its own geographical region, as
well as ties with countries from another continent. In this case, we
might expect that random and independent bad (or good)
economic news appearing in any given country have behaviour
similar to random internal processes in nodes in our artificial
model (random internal failures/recoveries). When economic
problems in one country propagate to a neighbouring country
within the same geographical region, the process resembles the
external failures in our artificial model, whereas interaction
between countries from different continents may be modelled by
the interdependent links from our network model. For the CDS
network system we also suppose that the fractional definition for
the threshold (mfrac) is somewhat more natural then the absolute
definition, as it is less dependent on the country size or its
importance, that is, the number of links a country has to other
countries.

We study the international CDS system during the period
between June 2005, the earliest date when CDSs traded for all
countries, and February 2014. We apply the network model to it
as follows. We represent each country with one node that can
have two states: active or failed. As the raw CDS values are
continuous by nature and our model uses binary node states (up
or down), we perform a trend mapping procedure to form a
binary signal (0 or 1) for each country. In particular, for each time
t, we consider the interval [t� 252, t] of 252 business days (the
usual number of business days in a year). If the CDS value of a
country has a net increase during that period, we consider the
node of the country to be active at t (state¼ 1). If it does not, it is
inactive (state¼ 0). Having individual binary signals for each
country, we can calculate the average activity 0rz(t)r1 for both
EU and Latin American networks. The resulting time series for

EU and LA activities are shown in Fig. 6b. First, we note that the
two geographical networks spend most of time having either a
significantly high activity or significantly low activity (that is,
there is an indication for two well-defined single-network states).
We confirm this by measuring the frequency distribution of
network activities (Fig. 7a,b), which exhibit a strong bimodality
in z. The CDS network system in Fig. 6b shows rapid transitions
between the high and low activity states, much similar to the
artificial network system in Fig. 6a. Figure 7c shows the calculated
correlations between binary signals of pairs of individual nodes.
The correlation matrix reveals two strongly correlated blocks,
which we identify as Latin American block (numbers 1–8) and
EU block (numbers 9–25).

In Fig. 6b, we also observe that the two networks sometimes
make transitions simultaneously, but not always. This behaviour
also resembles the behaviour observed in the artificial networks in
Fig. 6a.

Finally, we find that it is possible to estimate numerical values
for all the model parameters of this real system (internal p�EU, p�LA;
external mfrac,EU, mfrac,LA, rEU, rLA; and interdependent rd) from
the data. The basic idea is that for each parameter we identify an
observation experiment in which this particular parameter
dominates, enabling us to effectively isolate individual parameters
from the noise of many others. For example, when both networks
(EU and LA) are in the high activity phase, most of the failures
are in fact internal failures. This allows us to almost directly
estimate p�EU and p�LA from Fig. 6b, by observing p�EU¼1� zEUh i
and p�LA¼1� zLAh i. External failures are most significant when a
network is in a low activity state. Interdependent parameter rd

can be estimated by studying the correlation between zEU(t) and
zLA(t), as this is an increasing function of rd. Threshold
parameters mfrac,EU and mfrac,LA can be estimated by exploiting
the fact that they most significantly determine the fraction of time
that each network spends in the high, or low, activity states.
We describe in detail our procedures for numerically estimating
these model parameters in the Supplementary Methods.
The procedure for estimating some of these parameters is also
illustrated in Supplementary Fig. 1. Numerical results for the
parameter estimates are presented in Supplementary Table 1. Our
dynamical network model also independently predicts that the
typical fluctuation size of z(t) is not uniform for all values of z, but
has a spike around z � 1

2. We observe this phenomenon in
both our simulations and the real network dynamics (Supple-
mentary Fig. 2).

Discussion
Interacting networks appear across many disciplines, from
medicine, physics, biology and ecology, finance and economics,
to infrastructure (refs 34,35). We propose a generic model that
captures some of the most common processes found in real
interacting networks—node failure, systemic damage propagation
and node recovery. We report several intriguing results. Our
solution of the model produces a rich phase diagram with a
number of tipping points (critical points, triple points and
transition lines). Using the phase diagram, we solve a
fundamental problem of the optimal repairing strategy for a
damaged system consisting of interconnected networks. Solving
this problem enables us to determine the minimum set of node
repairs required to repair a failed interconnected network system;
thus, it becomes fully functional again. Remarkably, we find that
the triple points from our phase diagram play the dominant role
in constructing the optimal repairing strategy in damaged
interacting systems. This implies that triple points are not only
a thermodynamic or topological curiosity, but they have a very
direct practical meaning and application, specifically in
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constructing repairing strategies in interacting systems. The
problem of functional repair using minimal intervention is
relevant in medicine, economics and other disciplines, when
repairs are invasive or expensive. Finally, we apply our model to a
selected real system: interconnected networks of CDSs, for two
interconnected groups of countries. We propose a methodology
to measure all of the model parameters in a real system, by using
observational experiments in which a particular parameter
dominates the behaviour of the system (see Supplementary
Information).

Methods
Damage conductivity parameters. Parameters rA and rB are introduced, because
they describe how easily the damage is spread through the network. When r¼ 0
there is no damage spread between the nodes, and when r¼ 1 there is perfect
damage conduction. Assuming that external failures occur with certainty would
mean fixing r to be equal to 1. In the case of a single network with recovery, it
has been shown12 that many important phenomena (for example, spontaneous
recovery) are lost when r¼ 1. The most interesting parts of the phase diagram
are in fact where r is far from 1.

It is noteworthy that our choice of the value for rd is quite limited. If rd is
too large, we find that the damage spreads through dependency links extremely
efficiently and the only possible stable state is total system collapse. The extreme
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vulnerability of interdependent networks is well known2,22. As there is always at
least one functional stable state in biological or man-made systems, total system
collapse as the only stable state is not realistic. Thus, we need the rd parameter to
‘soften’ the dependency links22 and allow a more realistic behaviour and its value
should not be close to 1.

Mean field theory. Fractions aA and aB denote the fraction of nodes that are failed
due to any of the three types of failures: internal (I), external (E) or dependency
failure (D). We denote the probabilities that a node at a time of observation
experiences a failure of I, E or D type as P(I), P(E) and P(D), respectively. As a first
approximation, we assume that these failures are mutually independent events.
Considering network A first, we write an expression for the probability aA,k that a
node of degree k in network A is failed. The node can fail due to I, E or D events, or
to a combination of them. Using the inclusion–exclusion principle for independent
events, we write

aA;k ¼ P Ið Þþ P Eð Þþ P Dð Þ� P Ið ÞP Eð Þ� P Ið ÞP Dð Þ� P Eð ÞP Dð Þþ P Ið ÞP Eð ÞP Dð Þ: ð3Þ
Next, we separately calculate P(I), P(E) and P(D).

P(I) is also the average fraction of internally failed nodes in a network, as
internal failures are independent events. This is a Poisson process on individual
nodes12,36 and therefore P Ið Þ¼e� pAt . As parameters pA and t come in this
expression as a product, we can replace them with a single parameter, p�A � e� pAt ,
which is bounded and also has the property 0 � p�A � 1 and thus P Ið Þ¼p�A for
network A.

Next, we calculate P(E), the probability that a randomly chosen node with
degree k has externally failed. Focusing once again on network A, without a loss of
generality, we let F(k) be the probability that a node of degree k in network A is
located in a critically damaged neighbourhood (where fewer than mþ 1 nodes are
active). By definition, the time-averaged fraction of failed nodes (for any reason) in
network A is 0raAr1. In a mean-field approximation, this is also the average
probability that a randomly chosen node in that network has failed. Using
combinatorics, we obtain F k; aAð Þ¼

Pm
j¼0 ð

k
j
Þak� j

A 1� aAð Þj (ref. 12). The
probability that a node of degree k in network A has externally failed is then
P(E)¼ rAF(k, aA). An analogous result is valid for network B.

Finally, we calculate P(D), the probability that a node has failed due to the
failure of its dependent counterpart node in the other network. For network A, this
probability is equal to the product of parameter rd and the probability that a
counterpart node in B has failed: P(D)¼ rdaB. In network B by analogy, this
probability is equal to rdaA.

Writing equation (3) for both networks and inserting the results for P(I), P(E)
and P(D) after summing over all k (and noting aA¼

P
k f kð ÞaA;k and

aB¼
P

k
f kð ÞaB;k), we get a system of two coupled equations that describes the

system of networks,

aA ¼ p�A þ rdaB 1� p�A
� �

þ
X

k

f kð ÞF aAð Þ rA � p�ArA � rArdaB þ p�ArArdaB
� �

: ð4Þ

aB ¼ p�B þ rdaA 1� p�B
� �

þ
X

k

f kð ÞF aBð Þ rB � p�BrB � rBrdaA þ p�BrBrdaA
� �

: ð5Þ

Additional phase diagrams. Figure 8a shows the collection of stable solutions
(solid blue lines) and unstable solutions (dashed red lines) for the activity zA¼ 1
� aA of network A, with parameter values as used in Fig. 1a, but for a range of

different values of p�A. The solid black line indicates p�A¼0:16, the value of p�A used
in Fig. 1a. Green circles in this figure correspond to the stable states found in
Fig. 1a and red crosses correspond to the unstable solutions for zA form Fig. 1a.
Figure 8b shows an analogous phase diagram for the parameters with values as in
Fig. 8a, again for a range of p�A.

Forbidden transitions. Transition lines for 12-21 and 21-12 do not appear in
our phase diagram and it is quite easy to understand why. Let us assume that the
transition line for 12-21 does exist. To obtain that transition, the idea would be to
simultaneously increase p�A and decrease p�B (that is, increase the damage in one
part of the system and decrease in another part). Suppose we are in phase 12 and
infinitesimally close to the supposed transition line. Considering the local geometry
of this line, we may be able to observe its angle with respect to the p�A axis. If a
transition occurs when increasing p�A and decreasing p�B, the tangent on the
supposed line would have an angle of y 2 0; p

2

� �
. From here, it follows that by

increasing p�A only, while keeping p�B constant, we would also make a transition
(cross the transition line). The only other possibility would be that we were moving
along the transition line, but this is easy to disprove because it would imply that the
transition does not depend on p�A. If increasing p�A only causes a transition, the
transition must end in state 22 and not in 21. This is because if we only increase
p�A, we increase damage to both network A (directly) and network B (indirectly,
through the interdependent links).

Geometry of the Manhattan distance minimization problem. The optimal
strategies shown in different colours in Fig. 5 are derived from the geometrical
reasoning shown in Fig. 9. Figure 9a shows a plot of a series of curves consisting of
points at identical Manhattan distances from point S1 (equidistant curves). They
produce a ‘diamond’ shape, and the minimal Manhattan distance between point S1

and the green region translates into the task of ‘fitting’ the diamond so that it just
touches the green region and its centre is at S1. The diamond in Fig. 9a touches
the green region at two points—triple points, which are the solution to the
minimization problem. Figure 9b shows the solution for point S6 in the light
blue region. Here the solution suggests a different strategy—decreasing only p�A.

Credit default swaps. Figure 6b shows an analysis of 5-year sovereign debt CDSs
for a set of European countries: France, Germany, Italy, Spain, Portugal, Belgium,
Austria, Denmark, Sweden, Greece, Ukraine, Hungary, Poland, Croatia, Slovenia,
Romania, Bulgaria and Slovakia. This is the set of European countries that had a
sovereign debt CDS in 2005. The set of Latin American countries we analyse
consists of Brazil, Colombia, Argentina, Mexico, Venezuela, Chile, Peru and
Panama. A CDS is typically used to transfer the credit exposure of fixed income
products from one party to another. The buyer of the CDS is then obligated to
make periodic payments to the seller of the CDS until the swap contract matures.
In return, the seller of the CDS agrees to compensate (pay off) the seller who
holds this third party debt if this (third party) defaults on the issued debt.

A CDS is, in effect, an insurance against non-payment of a debt owed by a third
party. The buyer of a CDS does not have to hold the debt of the third party but can
speculate on the possibility that the third party will indeed default and the buyer
can purchase the CDS for this speculative purpose. CDSs were developed in the
1990s and, given their simple structure and flexible conditions, they are now a
major part of the credit derivative activity in the OTC market used to hedge credit
risk. One of the most important aspects of a CDS is the definition of the ‘credit
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event’ that triggers the CDS. These events include bankruptcy, obligation
acceleration, obligation default, failure to pay, repudiation (moratorium) and
restructuring. In the case of the sovereign bond market, the last three are typically
included in the contracts. CDSs are used by investors to hedge exposure to a fixed
income instrument, to speculate on likelihood of a third party (reference asset)
default, or to invest in foreign country credit without currency exposure.
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