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ABSTRACT

Deep neural networks have demonstrated improved performance at predicting the sequence specificities of DNA- and RNA-

binding proteins compared to previous methods that rely on k-mers and position weight matrices. To gain insights into why

a DNN makes a given prediction, model interpretability methods, such as attribution methods, can be employed to identify

motif-like representations along a given sequence. Because explanations are given on an individual sequence basis and

can vary substantially across sequences, deducing generalizable trends across the dataset and quantifying their effect size

remains a challenge. Here we introduce global importance analysis (GIA), a model interpretability method that quantifies the

population-level effect size that putative patterns have on model predictions. GIA provides an avenue to quantitatively test

hypotheses of putative patterns and their interactions with other patterns, as well as map out specific functions the network has

learned. As a case study, we demonstrate the utility of GIA on the computational task of predicting RNA-protein interactions

from sequence. We first introduce a convolutional network, we call ResidualBind, and benchmark its performance against

previous methods on RNAcompete data. Using GIA, we then demonstrate that in addition to sequence motifs, ResidualBind

learns a model that considers the number of motifs, their spacing, and sequence context, such as RNA secondary structure

and GC-bias.

Introduction

To infer sequence preferences of RNA-binding proteins (RBPs), a variety of in vitro and in vivo experimental methods enrich
for protein-bound RNA sequences1–8, and computational methods are used to deduce the consensus RNA sequence and/or
structure features that these bound sequences share9–13. Many computational approaches employ position-weight-matrices
(PWMs) or k-mers to model RNA sequence and, in some cases, its secondary structure context. These methods often make
simplifying assumptions that do not fully consider biologically important features, such as the multiplicity, size, and position of
the features along a given sequence.

Recently, deep neural networks (DNNs), predominantly based on convolutional neural networks (CNNs) or convolutional-
recurrent network hybrids, have emerged as a promising alternative, in most cases, improving prediction performance on
held-out test data13–19. DNNs are a powerful class of models that can learn a functional mapping between input genomic
sequences and experimentally measured labels, requiring minimal feature engineering20–22. DeepBind is one of the first “deep
learning” approaches to analyze RBP-RNA interactions13. At the time, it demonstrated improved performance over PWM- and
k-mer-based methods on the 2013-RNAcompete dataset, a standard benchmark dataset that consists of 244 in vitro affinity
selection experiments that span across many RBP families5. Since then, other deep learning-based methods have emerged,
further improving prediction performance on this dataset23–25 and other CLIP-seq-based datasets11, 18, 26, 27.

To validate that DNNs are learning biologically meaningful representations, features important for model predictions
are visualized and compared to known motifs, previously identified by PWM- and k-mer-based methods28. For RBPs, this
has been accomplished by visualizing first convolutional layer filters and via attribution methods13, 18, 23, 24. First layer filters
have been shown to capture motif-like representations, but their efficacy depends highly on choice of model architecture29,
activation function30, and training procedure31. First-order attribution methods, including in silico mutagenesis13, 32 and other
gradient-based methods19, 33–36, are interpretability methods that identify the independent importance of single nucleotide
variants in a given sequence toward model predictions – not the effect size of extended patterns such as sequence motifs.

1

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2020.09.08.288068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288068
http://creativecommons.org/licenses/by-nc-nd/4.0/


Recent progress has expanded the ability to probe interactions between putative motifs37–39. For instance, MaxEnt
Interpretation uses Markov Chain Monte Carlo to sample sequences that produce a similar activation profile in the penultimate
layer of the DNN37, allowing for downstream analysis of these sequences. Deep Feature Interaction Maps estimates the
pairwise interactions between features (either nucleotides or subsequences) by monitoring how perturbations of the source
features influence the attribution score of the target features in a given sequence38. DeepResolve uses gradient ascent to find
intermediate feature maps that maximize a class-activated neuron39. Class-activated neurons are often highly expressive (i.e.
many patterns can drive its high activity)40, requiring multiple initializations to sample across a diversity of possible patterns
that can lead to a similar neuron activity level. The complex optimization landscape makes it difficult to ensure that the feature
map space is sampled well enough to capture the diversity of features/interactions learned by a given class-activated neuron.

These aforementioned interpretability methods provide insights into sequence patterns that are associated with model
predictions. The feature importances are often noisy and their scores are often meaningful only within the context of an
individual sequence, making it challenging to deduce generalizable patterns across the dataset. Nevertheless, these methods
provide a powerful approach to derive hypotheses of important patterns such as motifs and putative feature interactions.

Here we introduce global importance analysis (GIA), an approach that enables hypothesis-driven model interpretability
to quantitatively measure the effect size that patterns have on model predictions across a population of sequences. GIA is a
natural follow-up to current interpretability methods, providing an avenue to move beyond observations of putative features,
such as motifs, towards a quantitative understanding of their importance. As a case study, we highlight the capabilities of GIA
on the computational task of predicting RNA sequence specificities of RBPs. We introduce ResidualBind, a new convolutional
network, and demonstrate that it outperforms previous methods on RNAcompete data. Using GIA, we demonstrate that in
addition to sequence motifs, ResidualBind learns a model that considers the number of motifs, their spacing, and sequence
context, such as RNA secondary structure and GC-bias.

Global importance analysis

Global importance analysis measures the population-level effect size that a putative feature, like a motif, has on model
predictions. Given a sequence-function relationship i.e. F : x ! y, where x is a sequence of length L (x 2 AL, where
A = {A,C,G, T}) and y represents a corresponding function measurement (y 2 R), the global importance of pattern �
(� 2 Al, where l < L) embedded starting at position i in sequences under the observed data distribution D is given by:

Iglobal = Ex�i⇠D[y|x]� Ex⇠D[y|x] , (1)

where E is an expectation and x�i represents sequences drawn from the data distribution that have pattern � embedded at
positions [i, i+ l]. Equation 1 quantifies the global importance of pattern � across a population of sequences while marginalizing
out contributions from other positions. Important to this approach is the randomization of other positions, which is necessary
to mitigate the influence of background noise and extraneous confounding signals that may exist in a given sequence. If the
dataset is sufficiently large and randomized, then Eq. 1 can be calculated directly from the data. However, sequences with the
same pattern embedded at the same position and a high diversity at other positions must exist for a good estimate of Eq. 1.

Alternatively, a trained DNN can be employed as a surrogate model for experimental measurements by generating data for
synthetic sequences necessary to calculate Eq. 1, using model predictions as a proxy for experimental measurements. Given a
DNN that maps input sequence to output predictions, i.e. f : x ! y⇤, where y⇤ represents model predictions, the estimated
global importance of pattern � embedded starting at position i under the approximate data distribution D⇤ is given by:

bIglobal = Ex�i⇠D⇤ [y⇤|x]� Ex⇠D⇤ [y⇤|x] ,

⇡ 1

N

NX

n

f(x�i
n )� 1

N

NX

n

f(xn) ,

where bIglobal represents an estimate of Iglobal, the expectation is approximated with an average of N samples from an
approximate data distribution D⇤ ⇠ D. Without loss of generality, if we sample the same nth sequence for both expectations
with the only difference being that x�i

n has an embedded pattern, then we can combine summations, according to:

bIglobal ⇡ 1

N

NX

n

�
f(x�i

n )� f(xn)
�
. (2)

The difference between the nth sequence with and without the embedded pattern inside the summation of Eq. 2 calculates the
local effect size – the change in prediction caused by the presence of the pattern for the given sequence. The average across N
samples estimates the global effect size – the change in prediction caused by the presence of the pattern across a population of
sequences.
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The approximate data distribution must be chosen carefully to be representative of the observed data distribution and to
minimize any distributional shift, which can lead to misleading results. Knowing the complete information about the data
distribution (including all possible interactions between nucleotides) is intractable, but it is possible to construct a sequence
model of the data distribution that preserves some desirable statistical properties. One approach can be to sample sequences
from a position-specific probability model of the observed sequences – average nucleotide frequency at each position, also
referred to as a profile. A profile model captures position-dependent biases while averaging down position-independent patterns,
like motifs. Alternative sequence models include random shuffling and dinucleotide shuffling of the observed sequences, which
would maintain the same nucleotide and dinucleotide frequencies, respectively. If there exists high-order dependencies in
the observed sequences, such as RNA secondary structure or motif interactions, a distributional shift between the synthetic
sequences and the data distribution may arise. Later, we will demonstrate how structured synthetic sequences can be used to
address targeted hypotheses of motif dependency on RNA secondary structure. Alternatively, the sequences used in GIA can
be sampled directly from the observed dataset, although this requires careful selection such that unaccounted patterns do not
persist systematically, which may confound GIA. Prior knowledge can help to select a suitable approximate data distribution. In
this paper, we employ GIA using 7 different sampling methods for the approximate data distribution: sampling from a profile
model, random shuffle of observed sequences, dinucleotide shuffle of observed sequences, and a random subset of observed
sequences sampled from each quartile of experimental binding scores (see Methods).

GIA calculates a statistical association between a sequence pattern and a functional outcome. Similar to randomized control
trials, GIA satisfies properties such as ignorability of assignment and exchangeability of treatment effect, i.e. which sequences
have interventions with embedded patterns, ensuring that GIA provides a causal quantity that is identifiable with Equation 2.
Using experimental measurements for the same sequences in our GIA experiments would provide a direct way to calculate
causal effect sizes. However, this can be time consuming and costly due to the large number of sequences required to calculate
Eq. 2 for each hypothesis. Here, we opt to use a DNN, which has learned to approximate the underlying sequence-function
relationship of the data, to “measure” the potential outcome of interventions (i.e. embedded patterns) – using predictions in lieu
of experimental measurements. Consequently, GIA quantifies the causal effect size of the interventional patterns through the
lens of the DNN and is thus subject to the quality of the learned sequence-function relationship. Therefore, GIA is, at its core, a
model interpretability tool – a method to quantitatively uncover causal explanations of a DNN.

While Eqs. 1 and 2 describe the global importance of a single pattern, GIA supports embedding more than one pattern
(as will be demonstrated below). GIA can also be extended to multi-task problems when each class is independent. GIA
is a formalization of previous in silico experiments that quantify population-level feature importance28, 32, 41, which helps to
distinguish it from other in silico experiments to obtain model predictions for query sequences as a proxy for experimental
measurements42 and occlusion-based in silico experiments that identify the importance of features local to a sequence under
investigation41, 43.

Materials and methods

RNAcompete dataset

Overview. We obtained the 2013-RNAcompete dataset from5, where a full explanation of the data can be found. The
2013-RNAcompete experiments consist of around 241,000 RNA sequences each 38-41 nucleotides in length, split into two sets
‘set A’ (120,326 sequences) and ‘set B’ (121,031 sequences). Sequences were designed to ensure that all possible combinations
of 9-mers are sampled at least 16 times, with each set getting 8 copies of all possible 9-mers. The provided binding score for
each sequence is the log-ratio of the fluorescence intensities of pull-down versus input, which serves as a measure of sequence
preference. The 2013-RNAcompete dataset consists of 244 experiments for 207 RBPs using only weakly structured probes5.

Preparation of RNAcompete datasets. Each sequence from ‘set A’ and ‘set B’ was converted to a one-hot representation.
For a given experiment, we removed sequences with a binding score of NaN. We then performed either clip-transformation
or log-transformation. Clip-transformation consists of clipping the extreme binding scores to the 99.9th percentile. Log-
transformation processes the binding scores according to the function: log (S � SMIN + 1), where S is the raw binding score
and SMIN is the minimum value across all raw binding scores. This monotonically reduces extreme binding scores while
maintaining their rank order, and also yields a distribution that is closer to a Normal distribution. The processed binding
scores of either clip-transformation or log-transformation were converted to a z-score. We randomly split set A sequences
to fractions 0.9 and 0.1 for the training and validation set, respectively. Set B data was held out and used for testing. RNA
sequences were converted to a one-hot representation with zero-padding added as needed to ensure all sequences had the same
length of 41 nucleotides. Henceforth, all predictions and experimental binding scores are in terms of the z-transformed clip- or
log-transformed binding score.
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ResidualBind

Architecture. ResidualBind takes one-hot encoded RNA sequence as input and outputs a single binding score prediction
for an RBP. ResidualBind consists of: (1) convolutional layer (96 filters, filter size 11), (2) dilated residual module, (3)
mean-pooling layer (pool size 10), (4) fully-connected hidden layer (256 units), and (5) fully-connected output layer to a single
output. The dilated residual module consists of 3 convolutional layers with a dilation rate of 1, 2, and 4, each with a filter
size of 3. Each convolutional layer employs batch normalization prior to a rectified linear unit (ReLU) activation and dropout
probabilities according to layers (1) 0.1, (2) 0.2, (4) 0.5. The pre-activated output of the third convolutional layer is added to the
inputs of the dilated residual module, a so-called skipped connection44, the output of which is then activated with a ReLU. The
stride of all convolutions is 1 and set to the pool size for the mean-pooling layer. We found that varying the hyperparameter
settings largely yielded similar results. Choice of the final model was based on slightly better performance on the validation set.

Training ResidualBind. For each RNAcompete experiment, we trained a separate, randomly-initialized ResidualBind model
on ‘set A’ sequences by minimizing the mean squared-error loss function between the model predictions and the experimental
binding scores (which were used as labels). All models were trained with mini-batch stochastic gradient descent (mini-batch of
100 sequences) with Adam updates45 with a decaying learning rate – the initial learning rate was set to 0.001 and decayed by
a factor of 0.3 if the model performance on a validation set (as measured by the Pearson correlation) did not improve for 7
epochs. Training was stopped when the model performance on the validation set does not improve for 20 epochs. Optimal
parameters were selected by the epoch which yields the highest Pearson correlation on the validation set. The parameters of
each model were initialized according to Glorot initialization46. On average, it took about 100 epochs (13 seconds/epoch) to
train an RNAcompete experiment on a single NVIDIA 2080ti RTX graphical processing unit. Code for building, training, and
evaluating ResidualBind was written in Python using Tensorflow 247.

Evaluation. Residualbind models were evaluated using the Pearson correlation between model predictions and experimental
binding scores on the held-out test data (‘Set B’), similar to12, 13.

Incorporation of secondary structure profiles. Paired-unpaired structural profiles were calculated using RNAplfold48.
Structural profiles consisting of predicted paired probabilities of five types of RNA structure – paired, hairpin-loop, internal
loop, multi-loop, and external loop (PHIME) – were calculated using a modified RNAplfold script10. For each sequence, the
window length (-W parameter) and the maximum spanning base-pair distance (-L parameter) were set to the full length of
the sequence. Secondary structure profiles were incorporated into ResidualBind by creating additional input channels. The
first convolutional layer now analyzes either 6 channels (4 channels for one-hot primary sequence and 2 channels for PU
probabilities) or 9 channels (4 channels for one-hot primary sequence and 5 channels for PHIME probabilities).

Availability

Dataset and code are available at: http://github.com/p-koo/residualbind

In silico mutagenesis

In silico mutagenesis is calculated by systematically querying a trained model with new sequences with a different single
nucleotide mutation along the sequence and ordering the predictions as a nucleotide-resolution map (4⇥ L, where 4 is for each
nucleotide and L is the length of the sequence). Each prediction is subtracted by the wildtype sequence prediction, effectively
giving zeros at positions where the variant matches the wildtype sequence. To visualize the in silico mutagenesis maps, a
sequence logo is generated for the wildtype sequence, where heights correspond the sensitivity of each position via the L2-norm
across variants for each position, and visualized using Logomaker49.

Global Importance analysis

1,000 synthetic RNA sequences, each 41 nucleotides long, were sampled from 7 different models for the approximate data
distributions: 1) randomly sampled from a profile sequence model; 2) random shuffle of the observed sequences; 3) dinucleotide
shuffle of the observed sequences; and 4-7) a random subset of sequences sampled from each quartile of experimental binding
scores. Patterns under investigation were embedded in positions specified in each GIA experiment. We queried a trained
ResidualBind model with these sequences with and without the embedded pattern. We refer to the difference between the
predictions with and without the pattern for each sequence as the“local” importance (the value inside the summation of Eq. 2)
and the average across the population as the “global” importance.

Profile sequence model. The profile sequence model was generated by averaging the nucleotide frequency statistics across
all test sequences. 1,000 synthetic sequences were generated from the profile model by independently sampling the each
nucleotide at each position.
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Random shuffle. 1,000 observed sequences from the test set were randomly chosen and the positions of each sequence was
randomly shuffled, thereby preserving the nucleotide frequency while destroying coherent patterns.

Dinucleotide shuffle. 1,000 observed sequences from the test set were randomly chosen and the positions of each sequence
was dinucleotide shuffled, thereby preserving the dinucleotide frequency while destroying coherent patterns.

Quartile sampling. All observed sequences were sorted according to their experimental binding score and divide into 4 bins.
The 1st Quartile corresponds to the sequences with the lowest 25% in binding scores and the 3rd Quartile corresponds to the
50%-75% in binding scores. After this division, we randomly select 1,000 sequences from each bin, creating 4 different sets of
sequences from different models of the approximate data distribution.

Motif Visualization

Motif representations learned by ResidualBind are visualized with 2 methods, top k-mer motif and k-mer alignment motif. Top
k-mer motif plots the top k-mer as a logo with heights scaled according to the L2-norm of the difference in global importance
of nucleotide variants at each position, which is measured via GIA by systematically introducing a single nucleotide mutation
to the top k-mer embedded at positions 18-24, and the global importance of wildtype top k-mer.

A k-mer alignment-based motif was generated by greedily aligning the top 10 k-mers (identified via GIA) to the top k-mer
according to the maximum cross-correlation value. The nucleotide frequency, weighted by the global importance score for
each k-mer, gives a matrix that resembles a position probability matrix which can be visualized as a sequence logo using
Logomaker49.

Results

To demonstrate the utility of GIA, we developed a deep CNN called ResidualBind to address the computational task of
predicting RNA-protein interactions. Unlike previous methods designed for this task, ResidualBind employs a residual block
consisting of dilated convolutions, which allows it to fit the residual variance not captured by previous layers while considering
a larger sequence context50. Moreover, the skipped connection in residual blocks foster gradient flow to lower layers, improving
training of deeper networks44. Dilated convolutions combined with skipped connections have been previously employed in
various settings for regulatory genomics16, 17, 41.

ResidualBind yields state-of-the-art predictions on the RNAcompete dataset

To compare ResidualBind against previous methods, including MATRIXReduce9, RNAcontext10, GraphProt11, DeepBind13,
RCK12, DLPRB23, cDeepbind24 and ThermoNet25, we benchmarked its performance on the 2013-RNAcompete dataset (see
Methods for details). We found that ResidualBind (average Pearson correlation: 0.690±0.169) significantly outperforms
previously reported methods based on PWMs (MATRIXReduce: 0.353±0.192, RNAcontext: 0.434±0.130), k-mers (RCK:
0.460±0.140), and DNNs (DeepBind: 0.409±0.167, cDeepbind: 0.582±0.169, DLPRB: 0.628±0.160, and ThermoNet:
0.671±0.171, p-value < 0.01, Wilcoxon sign rank test) (Fig. 1A). Interestingly, RNAcontext, RCK, ThermoNet, cDeepbind,
and DLPRB all take sequence and secondary structure predictions as input, whereas ResidualBind is a pure sequence-based
model.

We noticed that the preprocessing step employed by previous methods, which clips large experimental binding scores to
their 99.9th percentile value and normalizing to a z-score, a technique we refer to as clip-transformation, adversely affects the
fidelity of ResidualBind’s predictions for higher binding scores, the most biologically relevant regime (Fig. 1b). Instead, we
prefer preprocessing experimental binding scores with a log-transformation, similar to a Box-Cox transformation, so that its
distribution approaches a normal distribution while also maintaining their rank-order (see Methods). With log-transformation,
we found that ResidualBind yields higher quality predictions in the high-binding score regime (Fig. 1c), although the average
performance was essentially the same (Fig. 1d, average Pearson correlation is 0.685±0.172 for log-transformation). Henceforth,
our downstream interpretability results will be based on preprocessing experimental binding scores with log-transformation.

Secondary structure context does not help ResidualBind

RNA structure is important for RBP recognition52. Previous work, including RCK, RNAcontext, DRPLB, cDeepbind, and
ThermoNet, have found that including RNA secondary structure predictions as an additional input feature significantly improves
the accuracy of their model’s predictions. Despite yielding better predictions when considering only sequences, we wanted
to test whether incorporating secondary structure predictions would also improve ResidualBind’s performance. Similar to
previous methods, we predicted two types of RNA secondary structure profiles for each sequence using RNAplfold48, which
provides the probability for each nucleotide to be either paired or unpaired (PU), and a modified RNAplfold script10, which
provides the probability for each nucleotide to be in a structural context: paired, hairpin-loop, internal loop, multi-loop, and
external-loop (PHIME). Surprisingly, secondary structure profiles do not increase ResidualBind’s performance (Figs. 1, e and f,
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Figure 1. Performance comparison on the 2013-RNAcompete dataset. (a) Box-violin plot of test performance by different
computational methods. Each plot represents the Pearson correlation between model predictions and experimental binding
scores on held out test data for all 244 RBPs of the 2013-RNAcompete dataset. Median value is shown as a red line. (b,c)
Scatter plot of ResidualBind’s predicted binding scores and experimental binding scores from the test set of an RBP experiment
in the 2013-RNAcompete dataset (RNCMPT00169) processed according to (b) clip-transformation and (c) log-transformation.
Black dashed line serves as a guide-to-the-eye for a perfect correlation. (d) Box-violin plot of test performance for experimental
binding scores processed according to a clip-transformation and a log-transformation. (e) Box-violin plot of the test
performance for different input features: sequence, sequence and paired-unpaird secondary structure profiles (sequence+PU),
and sequence and PHIME secondary structure profiles (sequence+PHIME). (f) Histogram of the one-to-one performance
difference between ResidualBind trained on sequences and trained with additional PHIME secondary structural profiles.

average Pearson correlation of 0.685±0.172, 0.684±0.183, and 0.682±0.183 for sequence, sequence + PU, and sequence +
PHIME, respectively). One possible explanation is that ResidualBind has already learned secondary structure effects from
sequence alone, an idea we will explore later.

Going beyond in silico mutagenesis with GIA

It remains unclear why ResidualBind, and many other DNN-based methods, including cDeepbind, DLPRB, and ThermoNet,
yield a significant improvement over previous methods based on k-mers and PWMs. To gain insights into what DNN-
based methods have learned, DLPRB visualizes filter representations while cDeepbind employs in silico mutagenesis. Filter
representations are sensitive to network design choices29, 30; ResidualBind is not designed with the intention of learning

6/14

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 21, 2021. ; https://doi.org/10.1101/2020.09.08.288068doi: bioRxiv preprint 

https://doi.org/10.1101/2020.09.08.288068
http://creativecommons.org/licenses/by-nc-nd/4.0/


interpretable filters. Hence, we opted to employ in silico mutagenesis, which systematically probes the effect size that each
possible single nucleotide mutation in a given sequence has on model predictions. For validation purposes, we perform a
detailed exploration for a ResidualBind model trained on an RNAcompete dataset for RBFOX1 (dataset id: RCMPT000168),
which has an experimentally verified motif ‘UGCAUG’6, 51, 53. Figure 2a highlights in silico mutagenesis sequence logos for two
sequences with high predicted binding scores – one with a perfect match and the other with two mismatches to the canonical
RBFOX1 motif (Methods). Evidently, a single intact RBFOX1 motif is sufficient for a high binding score, while the sequence
that contains mismatches to the canonical motif can also have high binding scores by containing several ‘sub-optimal’ binding
sites (Fig. 2a, ii). This suggests that the number of motifs and possibly their spacing is relevant.

In silico mutagenesis, which is the gold standard for model interpretability of DNNs in genomics, is a powerful approach
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Figure 2. Investigation of a ResidualBind model trained on RBFOX1. (a) Scatter plot of experimental binding scores versus
predicted binding scores for test sequences in the 2013-RNAcompete dataset for RBFOX1 (Pearson correlation = 0.830). The
color of each point is determined by the number of mutations between the canonical motif (UGCAUG) and its best match in the
sequence. (i-ii) The inset shows sequence logos for in silico mutagenesis maps for a high binding score sequence with at best:
(i) a perfect match and (ii) a double nucleotide mismatch to the canonical RBFOX1 motif. Box plot of the local importance for
synthetic sequences with varying numbers of the (b) canonical RBFOX1 motif (UGCAUG) and (c) a sub-optimal motif
AGAAUG embedded progressively at positions: 4-9, 11-16, and 18-23. Black dashed line represents a linear fit, red horizontal
dashed line represents the median, and green triangles represents the global importance. (d) Box plot of the local importance
for synthetic sequences with varying degrees of separation between two RBFOX1 motifs (‘N’ represents a position with
random nucleotides). (e) Heatmap of the difference in the global importance for synthetic sequences embedded with single
nucleotide mutations of the canonical RBFOX1 motif from wildtype, with a sequence logo that has heights scaled according to
the L2-norm at each position. (f) Scatter plot of the experimental ln KD ratio of the mutant to wild type measured via surface
plasmon resonance51 versus the global importance for the same RBFOX1 variants. Red dashed line represents a linear fit and
the R2 and p-value from a t-test is shown in the inset. (g) Histogram of the R2 from a linear fit of global importance of
embedding different numbers of the top k-mer (identified by a separate, k-mer-based GIA experiment) at positions: 4-9, 11-16,
and 18-23, across the 2013-RNAcompete dataset.
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to highlight learned representations that resemble known motifs, albeit locally to an individual sequence. However, it can
be challenging to generalize the importance of the patterns that are disentangled from contributions by other factors in a
given sequence. Moreover, attribution methods find the independent contribution of each nucleotide on model predictions and
hence may not accurately quantify the effect size of larger patterns, such as motifs or combinations of motifs. Therefore, to
quantitatively test the hypothesis that ResidualBind learns additive effects from sub-optimal binding sites, we employ GIA.

GIA shows ResidualBind learns multiple binding sites are additive
By progressively embedding the canonical RBFOX1 motif (UGCAUG) and a suboptimal motif (AGAAUG, which contains
two mismatches at positions 1 and 3) in synthetic sequences sampled from a profile model at various positions, 4-9, 11-16,
and 18-23, we find ResidualBind has indeed learned that the contribution of each motif is additive (Fig. 2c). We also validate
that the spacing between two binding sites can decrease this effect when two motifs are too close (Fig. 2d), which manifests
biophysically through steric hindrance. While these results are demonstrated for synthetic sequences sampled from a profile
model, we found that these results are robust across other models of the approximate data distribution (see Supplemental Fig.
1).

GIA identifies expected sequence motifs with k-mers
In many cases, the sequence motif of an RBP is not known a priori, which makes the interpretation of in silico mutagenesis
maps more challenging in practice. One solution is to employ GIA for ab initio motif discovery by embedding all possible
k-mers at positions 18-24. Indeed the top scoring 6-mer that yields the highest importance score for a ResidualBind model
trained on RBFOX1 is ‘UGCAUG’ which is consistent with its canonical motif (Fig. 2e). Using the top scoring k-mer as a
base binding site, we can determine the importance of each nucleotide variant by calculating the global importance for all
possible single nucleotide mutations (Fig. 2e). Figure 2f shows that the global importance for different variants correlate
significantly with experimentally-determined lnKD ratios of the variants and wild type measured by surface plasmon resonance
experiments51 (p-value = 0.0015, t-test). Progressively embedding the top k-mer in multiple positions reveals that ResidualBind
largely learns a function where non-overlapping motifs are predominantly additive (Fig. 2g).

A motif representation can be generated from the global in silico mutagenesis analysis in two ways, by plotting the top
k-mer with heights scaled by the L2-norm of the GIA-based in silico mutagenesis scores at each position or by creating an
alignment of the top k-mers and calculating a weighted average according to their global importance, which provides a position
probability matrix that can be converted to a sequence logo. ResidualBind’s motif representations and the motifs generated from
the original RNAcompete experiment (which are deposited in the CISBP-RNA database5) are indeed similar (Supplemental
Table 1).

GIA reveals ResidualBind learns RNA secondary structure context from sequence
The 2013-RNAcompete dataset was specifically designed to be weakly structured5, which means that the inclusion of secondary
structure profiles as input features should, in principle, not add large gains in performance. To better assess whether ResidualBind
benefits from the inclusion of secondary structure profiles, we trained ResidualBind on the 2009-RNAcompete dataset54, which
consists of more structured RNA probes that include stem-loops for nine RBPs. We preprocessed the 2009-RNAcompete dataset
in the same way as the 2013-RNAcompete dataset using the log-tranformation for binding scores. On average, ResidualBind
yielded only a slight gain in performance by including PU secondary structure profiles (average Pearson correlation of
0.711±0.115 and 0.721±0.116 for sequence only and sequence+PU ResidualBind models, respectively).

In this dataset, VTS1 is a well-studied RBP with a sterile-alpha motif (SAM) domain that has a high affinity towards RNA
hairpins that contain ‘CNGG’55, 56. ResidualBind’s performance for VTS1 was comparable (0.6981 and 0.7073 for sequence
only and sequence+PU ResidualBind model, respectively), suggesting that the sequence-only model may be learning secondary
structure context. An in silico mutagenesis analysis for the sequence-only ResidualBind model reveals that the VTS1 motif is
found in sequences with a high and low binding score, albeit with flanking nucleotides given significant importance as well
(Fig. 3a). The presence of a VTS1 motif in a sequence is not sufficient to determine its binding score. Nevertheless, each
sequence was accurately predicted by the sequence-only model. The PU secondary structure profile given by RNAplfold for
each sequence reveals that the VTS1 motif is inside a loop region of a stem-loop structure in high binding score sequences and
in the stem region for low binding score sequences. This further supports that the network may be learning positive and negative
contributions of RNA secondary structure context directly from the sequence despite never explicitly being trained to do so.
Moreover, the seemingly noisy importance scores that flank the VTS1 motif may represent signatures of secondary structure.

To quantitatively validate that ResidualBind has learned secondary structure context, we performed GIA by embedding the
learned VTS1 motif (Fig. 3b) in either the loop or stem region of synthetic sequences designed to have a stem-loop structure
– enforcing Watson-Crick base pairs at positions 6-16 with 23-33 (Fig. 3c). As a control, a similar GIA experiment was
performed with the VTS1 motif embedded in the same positions but in random RNAs. Evidently, ResidualBind learns that the
VTS1 motif in the context of a hairpin loop leads to higher binding scores compared to when it is placed in other secondary
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Figure 3. Investigation of a ResidualBind model trained on VTS1 from the 2009-RNAcompete dataset. (a) Scatter plot of
experimental binding scores versus predicted binding scores on held-out test sequences. The color of each point is determined
by the number of mutations between the CISBP-RNA-derived motif (GCUGG) and the best match across the sequence. The
inset shows sequence logos for in silico mutagenesis maps generated by a ResidualBind model trained only on sequences for
representative sequences with high predicted binding scores (i-ii) and low predicted binding scores which contain the VTS1
motif (iii-iv). Below each sequence logo is a PU structure logo, where ‘U’ represent unpaired (grey) and ‘P’ represents paired
(black), calculated by RNAplfold. (b) Global importance for synthetic sequences embedded with single nucleotide mutations of
the top scoring 6-mer (GCUGGC). Above is a sequence logo with heights scaled according to the L2-norm at each position. (c)
Box plot of local importance for the top scoring 6-mer embedded in the stem and loop region of synthetic sequences designed
with a stem-loop structure and in the same positions in random RNA sequences. Green triangles represent the global
importance.

structure contexts. Similarly, these results are robust to choice of model for the approximate data distribution (Supplemental
Fig. 2).

GIA highlights importance of GC-bias
By observing in silico mutagenesis plots across many 2013-RNAcompete experiments, we noticed that top scoring sequences
exhibited importance scores for known motifs along with GC content towards the 3’ end (Figs. 4a and b). We did not observe
any consistent secondary structure preference for the 3’ GC-bias using structure predictions given by RNAplfold. Using GIA,
we tested the effect size of the GC-bias for sequences with a top 6-mer motif embedded at the center. Figures 4c and 4d show
that GC-bias towards the 3’ end indeed is a systemic feature for nearly all RNAcompete experiments with an effect size that
varies from RBP to RBP (Fig. 4e). As expected, consistent results were found across different models of the approximate data
distribution (Supplemental Figs. 3-5). We do not know the origin of this effect. Many experimental steps in the RNAcompete
protocol could lead to this GC-bias7, 57, 58.

Discussion

Global importance analysis is a powerful method to quantify the effect size of putative features that are causally linked to model
predictions. It provides a framework to quantitatively test hypotheses of the importance of putative features and explore specific
functional relationships using in silico experiments, for both positive and negative controls.

As a case study, we introduced ResidualBind for the computational task of predicting RNA-protein interactions. By
benchmarking ResidualBind’s performance on RNAcompete data, we showed that it outperforms previous methods, including
other DNNs. While DNNs as a class of models have largely improved performance compared to previous methods based on
PWMs and k-mers, model interpretability – based on attribution methods and visualization of first convolutional layer filters –
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Figure 4. GC-bias in high binding score sequences. (a) Representative sequence logos from in silico mutagenesis analysis for
a test sequence with a top-10 binding score prediction for RNAcompete experiments for CG17838 (RNCMPT00131) and HuR
(RNCPT00112). (b) Motif comparison between CISBP-RNA and ResidualBind’s motif representations generated by k-mer
alignments. (c) Box plot of local importance for synthetic sequences with the top scoring 6-mer embedded in position 18-24
and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41 (Motif+GC, right). As a control, the GC content
embedded at positions 35-41 without any motif is also shown. Green triangles represent the global importance. (d) Histogram
of the GC-bias effect size, which is defined as the global importance when GC-bias is placed on the 5’ end (orange) and the 3’
end (blue) of synthetic sequences with a top scoring 6-mer embedded at positions 18-24 divided by the global importance of
the motif at the center without any GC content, for each 2013-RNAcompete experiment. (e) Histogram of the difference
between the GC-bias effect size, GC-bias on the 5’ end minus the 3’ end for each 2013-RNAcompete experiment.

often demonstrate that they learn similar motif representations as previous PWM-based methods, which makes it unclear what
factors are driving performance gains. Since first-order attribution methods only inform the effect size of single nucleotide
variants on an individual sequence basis, insights have to be gleaned by observing patterns that generalize across multiple
sequences. Without ground truth, interpreting plots from attribution methods can be challenging.

Using GIA, we were able to move beyond speculation from observations of attribution maps by quantitatively testing
the relationships between putative features with interventional experiments across a population of sequences. Interestingly,
we found that despite ResidualBind’s ability to fit complex non-linear functions, it largely learns an additive model for
binding sites, which any linear PWM or k-mer based model is fully capable of capturing. We believe the performance
gains arise from positional information of the features, including spacing between binding sites and the position of sequence
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context, such as secondary structures and GC-bias. While these properties are well known features of RBP-RNA interactions,
previous computational models were not fully considering these factors, which may have led to their lower performance on the
RNAcompete dataset.

Moving past observational interpretability. Existing model interpretability methods provide a powerful way to identify
input features in a given sequence that are important for model predictions. When more than one pattern emerges, it remains
challenging to disentangle the relative importance of each feature on model predictions (especially if nonlinear interactions
exist) and how sequence context influences this. Associations of putative patterns from observations of attribution maps are
useful to generate hypotheses of what the network is learning. GIA provides a downstream analysis that allows one to directly
test hypotheses of putative features in a quantitative manner using interventional experiments on synthetic sequences sampled
from a model of the approximate data distribution. Of course a hypothesis must be formulated first and so it is still important to
perform a thorough first pass analysis with attribution methods and second-order interpretability methods.

Approximate data distribution. GIA requires choice of sequences in which to embed hypothesis patterns. In the main text,
we demonstrate results using a profile model, which is appropriate due to the slight position-specific bias in the 5’ end of the
RNA probes. There were no significant pairwise frequencies observed for other positions, on average. By design, RNAcompete
probes are diverse and thus any random sequence model seems to work well for this dataset. This may explain why GIA was
robust across all explored models of the approximate data distribution, including synthetic sequences via shuffling and those
that were observed in the data. For other datasets, there may be a more optimal choice. For example, in the binary classification
task for ChIP-seq data, the negative label sequences may serve as a suitable model for the approximate data distribution used to
embed patterns that will not introduce any significant distributional shift. In practice, it would be prudent to test the robustness
of the results across many different models of the approximate data distribution.

Beyond additive models of interpretability. Previously, quantifying the importance of a motif from attribution maps relied
on a strong assumption of an additive model of importance scores36, 38. Indeed, attribution methods such as DeepSHAP are
explicitly designed to distribute additive contributions of features toward model predictions from a baseline. However, this
assumes that each nucleotide’s contribution within a motif is additive. GIA can provide the global importance of extended
patterns, such as motifs, on model predictions without making such assumptions. Thus, GIA should, in principle, provide more
accurate insights when there exist non-additive interactions, i.e. stacking interactions within or flanking motifs and motif-motif
interactions42, 59, 60. Of course, GIA would yield similar results if the DNN learns an additive model of nucleotide importance
within a motif.

Generalization of GIA. GIA is a general framework that enables one to quantitatively probe the sequence-function relationship
learned by a DNN with controlled in silico experiments. Such experiments should be done on a case-by-case basis, depending
on the hypotheses that one would like to test.

The GIA experiments performed here are specific to the hypotheses generated from analyzing RNAcompete data. Analysis
of different datasets will create different hypotheses and thus may require customized GIA experiments. For instance, although
the GIA experiments that were performed here embed patterns in specific positions, alternative strategies include embedding
the pattern in random positions and marginalizing out this nuisance parameter. This would average over any positional bias.
Moreover, GIA does not necessarily require randomizing all input features; it can also be applied to a single sequence context.
For instance, occlusion-based experiments can remove a putative feature and be replaced with randomized features. This
measures the effect size of the removal of the putative feature(s) while fixing the rest of the sequence context. Unlike previous
occlusion-based model interpretability, the importance of the occluded region is marginalized out altogether, thus unaffected by
spurious patterns that may arise by chance or non-realistic positions that are effectively “zeroed-out”.

Although GIA was developed for genomic sequences, it can be broadly applied to protein sequences and non-sequence data
modalities, albeit the approach to randomize input features must be chosen carefully and thus requires domain knowledge.

ResidualBind. ResidualBind is a flexible model that can be broadly applied to a wide range of different RBPs without
modifying hyperparameters for each experiment, although tuning hyperparameters for each experiment would almost certainly
boost performance further. While ResidualBind was developed here for RBP-RNA interactions as measured by the RNAcompete
dataset, this approach should also generalize to other data modalities that measure sequence-function relationships, including
high-throughput assays for protein binding, histone modifications, and chromatin accessibility, given the outputs and loss
function are modified appropriately for the task-at-hand.

In vitro-to-in vivo generalization gap. Ideally, a computational model trained on an in vitro dataset would learn principles
that generalize to other datasets, including in vivo datasets. However, models trained on one dataset typically perform
worse when tested on other datasets derived from different sequencing technologies/protocols61, which have different technical
biases7, 57, 58, 62. Learned features like GC-bias may explain why DNNs exhibit large performance gains on held-out RNAcompete
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data but only a smaller gain compared to k-mer-based methods when tasked with generalization to in vivo data based on
CLIP-seq23–25. While we focus our model interpretability efforts on sequences with high binding scores, exploration in other
binding score regimes may reveal other sequence context. GIA highlights a path forward to tease out sequencing biases, which
can inform downstream analysis to either remove/de-bias unwanted features from the dataset.
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Supplemental Figure 1. Comparison of different models of the approximate data distribution for multiple binding
sites of RBFOX1. GIA was performed using different models of the approximate data distribution: profile, random shuffle,

dinucleotide shuffle, and different binding score quartiles. Box plots of the local importance for synthetic sequences with

varying numbers of the canonical RBFOX1 motif (UGCAUG) embedded progressively at positions: 4-9, 11-16, and 18-23.

Black dashed line represents a linear fit, red horizontal dashed line represents the median, and green triangles represent the

global importance. This demonstrates that GIA is robust across many different models of the approximate data distribution.
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Supplemental Figure 2. Comparison of different models of the approximate data distribution for secondary
structure preferences of VTS1 from the 2009-RNAcompete dataset. GIA was performed using different models of the

approximate data distribution: profile, random shuffle, dinucleotide shuffle, and different binding score quartiles. Box plot of

local importance for the top scoring 6-mer pattern, GCUGGC, embedded in the stem and loop region of synthetic sequences

designed with a stem-loop structure and in the same positions in random RNA sequences. Green triangles represent the global

importance.
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Supplemental Figure 3. Comparison of different models of the approximate data distribution for GC-bias of SNF.
GIA was performed using different models of the approximate data distribution: profile, random shuffle, dinucleotide shuffle,

and different binding score quartiles. Box plots show local importance for synthetic sequences with the top scoring 6-mer

embedded in position 18-24 and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41 (Motif+GC, right).

As a control, the GC content embedded at positions 35-41 without any motif is also shown. Green triangles represent the global

importance.
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Supplemental Figure 4. Comparison of different models of the approximate data distribution for GC-bias of
CG17838. GIA was performed using different models of the approximate data distribution: profile, random shuffle,

dinucleotide shuffle, and different binding score quartiles. Box plots show local importance for synthetic sequences with the

top scoring 6-mer embedded in position 18-24 and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41

(Motif+GC, right). As a control, the GC content embedded at positions 35-41 without any motif is also shown. Green triangles

represent the global importance.
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Supplemental Figure 5. Comparison of different models of the approximate data distribution for GC-bias of HuR.
GIA was performed using different models of the approximate data distribution: profile, random shuffle, dinucleotide shuffle,

and different binding score quartiles. Box plots show local importance for synthetic sequences with the top scoring 6-mer

embedded in position 18-24 and GCGCGC embedded at positions 1-7 (Motif+GC, left) or positions 35-41 (Motif+GC, right).

As a control, the GC content embedded at positions 35-41 without any motif is also shown. Green triangles represent the global

importance.
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