113 research outputs found
Mathematical description of vertical algal accessory pigment distributions in oceans - a brief presentation
A straightforward mathematical expression for describing the vertical distributions
of algal accessory pigments in oceans is presented. To this end ca 1500 empirical
datasets of accessory pigment depth profiles gathered during some 200 research cruises in different oceanic regions were analysed. These data were retrieved from
the bio-optical databases of SeaBASS and U.S. JGOFS published on the Internet.
The statistical relationships were analysed between the concentrations of
accessory pigments and the trophic indices of waters, as measured by the
surface concentrations of chlorophyll a and the optical depths in different oceanic
regions. A mathematical expression was established and formulas based on it were
found, approximating the relations between the vertical distributions of accessory
pigments and the chlorophyll a concentration. These formulas can be used to model
the species composition of algae in different parts of the ocean and in remote sensing
algorithms
Trybunał kompetencyjny - geneza, struktura i zakres działalności
"Problematyka sÄ…downictwa kompetencyjnego w Polsce od lat pozostaje poza zakresem
zainteresowań badaczy. Co prawda - patrząc nań z perspektywy historycznej
- odegrało ono relatywnie niewielką rolę w praktyce polskiego wymiaru sprawiedliwości,
tym nie mniej dla badacza celowym wydaje się jej przybliżenie."(...
Crystallographic and optical study of PbHfO3 crystals
The symmetry of the intermediate high-temperature phase of PbHfO3 has been determined unambiguously to be orthorhombic using a combination of high-resolution X-ray diffraction and birefringence imaging microscopy measurements of crystal plates. While lattice parameter measurements as a function of temperature in the intermediate phase are consistent with either orthorhombic or tetragonal symmetry, domain orientations observed in birefringence imaging microscopy measurements utilizing the Metripol system are only consistent with orthorhombic symmetry with the unit cell in the rhombic orientation of the pseudocubic unit cell
Microcrystalline Bi2ZnB2O7-polymer composites with silver nanoparticles as materials for laser operated devices
A novel type of composite for optoelectronic which is operated by second harmonic generation in the Bi2ZnB2O7 crystallites (with sizes varying within 1–30 μm) and Ag nanoparticles (NP) embedded in PMMA polymer composites is proposed. The substantial influence of the Ag NP on the bicolor induced second harmonic generation was established. The phototreatment was performed by bicolor beams of nanosecond Nd:YAG laser (1,064/532 nm) at angles between the fundamental and photoinducing beams varying within the 19°–21° range. The studies of the corresponding dependences of the SHG during illumination by the two coherent beams at 1,064/532 nm showed a maximal enhancement of the output SHG for the Ag NP average sizes equal to about 40 nm. The role of the excited plasmons may be here crucial. Additionally the time shift between the fundamental and the doubled frequency beam maxima was found, which shows strong sensitivity to illumination. The established time shift is sensitive to the pumping power
Optical second harmonic generation in Yttrium Aluminum Borate single crystals (theoretical simulation and experiment)
Experimental measurements of the second order susceptibilities for the second
harmonic generation are reported for YAl3(BO3)4 (YAB) single crystals for the
two principal tensor components xyz and yyy. First principles calculation of
the linear and nonlinear optical susceptibilities for Yttrium Aluminum Borate
YAl3(BO3)4 (YAB) crystal have been carried out within a framework of the
full-potential linear augmented plane wave (FP-LAPW) method. Our calculations
show a large anisotropy of the linear and nonlinear optical susceptibilities.
The observed dependences of the second order susceptibilities for the static
frequency limit and for the frequency may be a consequence of different
contribution of electron-phonon interactions. The imaginary parts of the second
order SHG susceptibility chi_{123}^{(2)}(omega), chi_{112}^{(2)}(omega),
chi_{222}^{(2)}(omega), and chi_{213}^{(2)}(omega) are evaluated. We find that
the 2(omega) inter-band and intra-band contributions to the real and imaginary
parts of chi_{ijk}^{(2)}\l(omega) show opposite signs. The calculated second
order susceptibilities are in reasonably good agreement with the experimental
measurements.Comment: 16 pages, 11 figure
Ultrahigh Piezoelectric Strains in PbZr1−xTixO3 single crystals with controlled Ti content close to the tricritical point
Intensive investigations of PbZr Ti O (PZT) materials with the ABO perovskite structure are connected with their extraordinary piezoelectric properties. Especially well known are PZT ceramics at the Morphotropic Phase Boundary (MPB), with x~0.48, whose applications are the most numerous among ferroelectrics. These piezoelectric properties are often obtained by doping with various ions at the B sites. Interestingly, we have found similar properties for undoped PZT single crystals with low Ti content, for which we have confirmed the existence of the tricritical point near x~0.06. For a PbZr Ti O crystal, we describe the ultrahigh strain, dielectric, optical and piezoelectric properties. We interpret the ultrahigh strain observed in the region of the antiferroelectric-ferroelectric transition as an inverse piezoelectric effect generated by the coexistence of domains of different symmetries. The complex domain coexistence was confirmed by determining optical indicatrix orientations in domains. The piezoelectric coefficient in this region reached an extremely high value of 5000 pm/V. We also verified that the properties of the PZT single crystals from the region near the tricritical point are incredibly susceptible to a slight deviation in the Ti content
A neutron diffuse scattering study of PbZrO<sub>3</sub> and Zr-rich PbZr<sub>1-x</sub>Ti<sub>x</sub>O<sub>3</sub>
A combined neutron diffuse scattering study and model analysis of the antiferroelectric crystal PbZrO3is described. Following on from earlier X-ray diffuse scattering studies, supporting evidence for disordering of oxygen octahedral tilts and Pb displacements is shown in the high-temperature cubic phase. Excess diffuse scattering intensity is found at theMandRpoints in the Brillouin zone. A shell-model molecular dynamics simulation closely reproduces the neutron diffuse scattering pattern. Both in-phase and antiphase tilts are found in the structural model, with in-phase tilts predominating. The transition between disordered and ordered structure is discussed and compared with that seen in Zr-rich PbZr1−xTixO3.</jats:p
- …