13 research outputs found

    Improving the reliability of on-site concrete strength estimation with non-destructive techniques

    Get PDF
    The non-destructive assessment of concrete strength in existing structures is a complex issue. While many standards exist addressing the way non-destructive measurements must be carried out, few exist for the strength assessment itself. Many questions remain unanswered, like for instance the reliability of the strength estimation, the possibility of estimating the concrete variability, or the advantages of combining several non-destructive techniques. These problems have been tackled by a recent RILEM committee (TC ISC 249) whose Guidelines and Recommendations are to be released soon. This paper details their main innovations and how they are expected to improve the engineering practice and the reliability of strength estimation in existing structures

    Limitations on ACI Code Minimum Thickness Requirements for Flat Slab

    Get PDF
    Reinforced concrete two-way flat slabs are considered one of the most used systems in the construction of commercial buildings due to the ease of construction and suitability for electrical and mechanical paths. Long-term deflection is an essential parameter in controlling the behavior of this slab system, especially with long spans. Therefore, this study is devoted to investigating the validation of the ACI 318-19 Code long-term deflection limitations of a wide range of span lengths of two-way flat slabs with and without drop panels. The first part of the study includes nonlinear finite element analysis of 63 flat slabs without drops and 63 flat slabs with drops using the SAFE commercial software. The investigated parameters consist of the span length (4, 5, 6, 7, 8, 9, and 10m), compressive strength of concrete (21, 35, and 49 MPa), the magnitude of live load (1.5, 3, and 4.5 kN/m2), and the drop thickness (0.25tslab, 0.5tslab, and 0.75tslab). In addition, the maximum crack width at the top and bottom are determined and compared with the limitations of the ACI 224R-08. The second part of this research proposes modifications to the minimum slab thickness that satisfy the permissible deflection. It was found, for flat slabs without drops, the increase in concrete compressive strength from 21MPa to 49MPa decreases the average long-term deflection by (56, 53, 50, 44, 39, 33 and 31%) for spans (4, 5, 6, 7, 8, 9, and 10 m) respectively. In flat slab with drop panel, it was found that varying drop panel thickness t2 from 0.25  to 0.75  decreases the average long-term deflection by (45, 41, 39, 35, 31, 28 and 25%) for span lengths (4, 5, 6, 7, 8, 9 and 10 m) respectively. Limitations of the minimum thickness of flat slab were proposed to vary from Ln/30 to Ln/19.9 for a flat slab without a drop panel and from Ln/33 to Ln/21.2 for a flat slab with drop panel. These limitations demonstrated high consistency with the results of Scanlon and Lee's unified equation for determining the minimum thickness of slab with and without drop panels. Doi: 10.28991/cej-2021-03091769 Full Text: PD

    Assessment of Concrete Strength Using the Combination of NDT—Review and Performance Analysis

    Get PDF
    This paper presents a review on combining NDT techniques, such as rebound hammer and ultrasonic pulse velocity, for assessing concrete compressive strength. These methods, though being favorably not invasive and easy to be extended to a larger number of elements, are affected by many contingency factors. The SonReb technique suggests combining the two methods to partially offset their low reliability if considered separately. For years, this concept was introduced in order to improve the evaluation compared with the use of one NDT. In order to combine the ultrasonic pulse velocity and rebound hammer, many empirical, multiparametric models were proposed in the literature as linear, power, exponential, or polynomial. However, the variety of these models emphasizes that they can give a correct strength prediction only for the particular cases that they are derived for. Therefore, to assess concrete on site, the strength should be predicted using a calibration procedure due to the variability of existing concrete mixes. This paper presents a brief outline of the key aspects of strength assessment, including the different approaches used to build the SonReb model and a calibration procedure for assessing concrete strength. A comparison study between the different approaches is proposed, and a performance analysis using Monte Carlo simulations is discussed. Finally, the estimation capacity of the existing model identification approaches is investigated, and the effect of the “trade-off” is analyzed for different random sampling with varying the number of cores

    Évaluation de la rĂ©sistance mĂ©canique du bĂ©ton dans les ouvrages existants en utilisant les tests non-destructifs et carottes : analyse de la mĂ©thodologie courante et recommandations pour Ă©valuation plus fiable

    No full text
    To assess concrete strength in an existing structure, the current methodology combines nondestructive measurements (NDT) like rebound hammer or/and pulse velocity with destructive technique (cores) in order to implement a relationship ‘‘conversion model” between the compressive strength and NDT measurements. The conversion model is used to estimate the local strength value at each test location using the corresponding NDT value.Then the estimated mean strength and/or estimated strength standard deviation (concrete strength variability) values are calculated. However, the reliability of these estimated values isalways a questionable issue because of the uncertainties associated with the strength assessment based upon NDT measurements. To improve the reliability, the uncertainties must be reduced by specifying and controlling their influencing factors. Therefore, the objective of this thesis is to analyze the current assessment methodology in order to provide practical recommendations that can improve the reliability of assessing the in-situ strength in existing concrete structures by nondestructive tests and cores.To this end, a simulator was built in order to analyze the effects of the most influencing factors using a large campaign of datasets from different sources (in-situ or laboratory studies,and generated synthetic data).The first contribution of this work is the development of a new model identification approach“bi-objective” that can efficiently capture the strength variability in addition to the mean strength. After studying the effect of the way of selection the core locations, a method was proposed to select these locations depending on the NDT measurements “conditional selection” that improves the quality of assessment without additional cost. A third innovation was the development of a procedure to identify the relation between the number of cores and the accuracy of the estimation. Finally recommendations were derived in order to providemore reliable estimated values.Pour Ă©valuer la rĂ©sistance mĂ©canique du bĂ©ton dans un ouvrage existant, la mĂ©thodologie courante combine des mesures non destructives (CND) comme le rebond ou/et la vitesse des ondes ultrasoniques avec la technique destructive (carottes) afin de produire une relation‘‘modĂšle de conversion” entre la rĂ©sistance mĂ©canique et les mesures CND. Le modĂšle de conversion est utilisĂ© pour estimer la valeur locale de rĂ©sistance mĂ©canique Ă  chaque emplacement de test en utilisant la valeur CND correspondante. Ensuite, on calcule les estimations de la rĂ©sistance moyenne et/ou de l’écart-type de la rĂ©sistance (variabilitĂ© de la rĂ©sistance du bĂ©ton). Cependant, la fiabilitĂ© d’estimation est toujours discutable en raison des incertitudes associĂ©es Ă  l’évaluation de la rĂ©sistance basĂ©e sur les mesures CND. Pour amĂ©liorer la fiabilitĂ©, les incertitudes doivent ĂȘtre rĂ©duites en spĂ©cifiant et en contrĂŽlant leurs facteurs d’influence. Par consĂ©quent, l’objectif de cette thĂšse est d’analyser la mĂ©thodologie d’évaluation courante afin de fournir des recommandations pratiques qui peuvent amĂ©liorer la fiabilitĂ© de l’évaluation de la rĂ©sistance in-situ du bĂ©ton dans les ouvrages existantes par des tests non destructifs et des carottes.Pour ce but, un simulateur a Ă©tĂ© construit afin d’analyser les effets des facteurs les plus influents en utilisant une vaste campagne de donnĂ©es provenant de sources diffĂ©rentes (Ă©tudes in situ ou en laboratoire et donnĂ©es synthĂ©tiques gĂ©nĂ©rĂ©es). La premiĂšre contribution de ce travail est le dĂ©veloppement d’une nouvelle approche d’identification du modĂšle ‘‘bi-objectif” qui peut efficacement capturer la variabilitĂ© de la rĂ©sistance mĂ©canique en plus de la moyenne. AprĂšs avoir Ă©tudiĂ© l’effet du mode de sĂ©lection des emplacements pour les carottes, une mĂ©thode a Ă©tĂ© proposĂ©e pour sĂ©lectionner ces emplacements en fonction des mesures CND ‘‘sĂ©lection conditionnelle” qui amĂ©liore la qualitĂ© de l’évaluation sans coĂ»t supplĂ©mentaire. Une derniĂšre innovation est l’établissement de courbes de risque qui quantifient la relation entre le nombre de carottes et la prĂ©cision de l’estimation. Enfin, des recommandations ont Ă©tĂ© formulĂ©es afin de fournir des estimations plus fiables

    Assessment of concrete strength in existing structures using nondestructive tests and cores : analysis of current methodology and recommendations for more reliable assessment

    No full text
    Pour Ă©valuer la rĂ©sistance mĂ©canique du bĂ©ton dans un ouvrage existant, la mĂ©thodologie courante combine des mesures non destructives (CND) comme le rebond ou/et la vitesse des ondes ultrasoniques avec la technique destructive (carottes) afin de produire une relation‘‘modĂšle de conversion” entre la rĂ©sistance mĂ©canique et les mesures CND. Le modĂšle de conversion est utilisĂ© pour estimer la valeur locale de rĂ©sistance mĂ©canique Ă  chaque emplacement de test en utilisant la valeur CND correspondante. Ensuite, on calcule les estimations de la rĂ©sistance moyenne et/ou de l’écart-type de la rĂ©sistance (variabilitĂ© de la rĂ©sistance du bĂ©ton). Cependant, la fiabilitĂ© d’estimation est toujours discutable en raison des incertitudes associĂ©es Ă  l’évaluation de la rĂ©sistance basĂ©e sur les mesures CND. Pour amĂ©liorer la fiabilitĂ©, les incertitudes doivent ĂȘtre rĂ©duites en spĂ©cifiant et en contrĂŽlant leurs facteurs d’influence. Par consĂ©quent, l’objectif de cette thĂšse est d’analyser la mĂ©thodologie d’évaluation courante afin de fournir des recommandations pratiques qui peuvent amĂ©liorer la fiabilitĂ© de l’évaluation de la rĂ©sistance in-situ du bĂ©ton dans les ouvrages existantes par des tests non destructifs et des carottes.Pour ce but, un simulateur a Ă©tĂ© construit afin d’analyser les effets des facteurs les plus influents en utilisant une vaste campagne de donnĂ©es provenant de sources diffĂ©rentes (Ă©tudes in situ ou en laboratoire et donnĂ©es synthĂ©tiques gĂ©nĂ©rĂ©es). La premiĂšre contribution de ce travail est le dĂ©veloppement d’une nouvelle approche d’identification du modĂšle ‘‘bi-objectif” qui peut efficacement capturer la variabilitĂ© de la rĂ©sistance mĂ©canique en plus de la moyenne. AprĂšs avoir Ă©tudiĂ© l’effet du mode de sĂ©lection des emplacements pour les carottes, une mĂ©thode a Ă©tĂ© proposĂ©e pour sĂ©lectionner ces emplacements en fonction des mesures CND ‘‘sĂ©lection conditionnelle” qui amĂ©liore la qualitĂ© de l’évaluation sans coĂ»t supplĂ©mentaire. Une derniĂšre innovation est l’établissement de courbes de risque qui quantifient la relation entre le nombre de carottes et la prĂ©cision de l’estimation. Enfin, des recommandations ont Ă©tĂ© formulĂ©es afin de fournir des estimations plus fiables.To assess concrete strength in an existing structure, the current methodology combines nondestructive measurements (NDT) like rebound hammer or/and pulse velocity with destructive technique (cores) in order to implement a relationship ‘‘conversion model” between the compressive strength and NDT measurements. The conversion model is used to estimate the local strength value at each test location using the corresponding NDT value.Then the estimated mean strength and/or estimated strength standard deviation (concrete strength variability) values are calculated. However, the reliability of these estimated values isalways a questionable issue because of the uncertainties associated with the strength assessment based upon NDT measurements. To improve the reliability, the uncertainties must be reduced by specifying and controlling their influencing factors. Therefore, the objective of this thesis is to analyze the current assessment methodology in order to provide practical recommendations that can improve the reliability of assessing the in-situ strength in existing concrete structures by nondestructive tests and cores.To this end, a simulator was built in order to analyze the effects of the most influencing factors using a large campaign of datasets from different sources (in-situ or laboratory studies,and generated synthetic data).The first contribution of this work is the development of a new model identification approach“bi-objective” that can efficiently capture the strength variability in addition to the mean strength. After studying the effect of the way of selection the core locations, a method was proposed to select these locations depending on the NDT measurements “conditional selection” that improves the quality of assessment without additional cost. A third innovation was the development of a procedure to identify the relation between the number of cores and the accuracy of the estimation. Finally recommendations were derived in order to providemore reliable estimated values

    Assessment of concrete strength in existing structures using nondestructive tests and cores : analysis of current methodology and recommendations for more reliable assessment

    No full text
    Pour Ă©valuer la rĂ©sistance mĂ©canique du bĂ©ton dans un ouvrage existant, la mĂ©thodologie courante combine des mesures non destructives (CND) comme le rebond ou/et la vitesse des ondes ultrasoniques avec la technique destructive (carottes) afin de produire une relation‘‘modĂšle de conversion” entre la rĂ©sistance mĂ©canique et les mesures CND. Le modĂšle de conversion est utilisĂ© pour estimer la valeur locale de rĂ©sistance mĂ©canique Ă  chaque emplacement de test en utilisant la valeur CND correspondante. Ensuite, on calcule les estimations de la rĂ©sistance moyenne et/ou de l’écart-type de la rĂ©sistance (variabilitĂ© de la rĂ©sistance du bĂ©ton). Cependant, la fiabilitĂ© d’estimation est toujours discutable en raison des incertitudes associĂ©es Ă  l’évaluation de la rĂ©sistance basĂ©e sur les mesures CND. Pour amĂ©liorer la fiabilitĂ©, les incertitudes doivent ĂȘtre rĂ©duites en spĂ©cifiant et en contrĂŽlant leurs facteurs d’influence. Par consĂ©quent, l’objectif de cette thĂšse est d’analyser la mĂ©thodologie d’évaluation courante afin de fournir des recommandations pratiques qui peuvent amĂ©liorer la fiabilitĂ© de l’évaluation de la rĂ©sistance in-situ du bĂ©ton dans les ouvrages existantes par des tests non destructifs et des carottes.Pour ce but, un simulateur a Ă©tĂ© construit afin d’analyser les effets des facteurs les plus influents en utilisant une vaste campagne de donnĂ©es provenant de sources diffĂ©rentes (Ă©tudes in situ ou en laboratoire et donnĂ©es synthĂ©tiques gĂ©nĂ©rĂ©es). La premiĂšre contribution de ce travail est le dĂ©veloppement d’une nouvelle approche d’identification du modĂšle ‘‘bi-objectif” qui peut efficacement capturer la variabilitĂ© de la rĂ©sistance mĂ©canique en plus de la moyenne. AprĂšs avoir Ă©tudiĂ© l’effet du mode de sĂ©lection des emplacements pour les carottes, une mĂ©thode a Ă©tĂ© proposĂ©e pour sĂ©lectionner ces emplacements en fonction des mesures CND ‘‘sĂ©lection conditionnelle” qui amĂ©liore la qualitĂ© de l’évaluation sans coĂ»t supplĂ©mentaire. Une derniĂšre innovation est l’établissement de courbes de risque qui quantifient la relation entre le nombre de carottes et la prĂ©cision de l’estimation. Enfin, des recommandations ont Ă©tĂ© formulĂ©es afin de fournir des estimations plus fiables.To assess concrete strength in an existing structure, the current methodology combines nondestructive measurements (NDT) like rebound hammer or/and pulse velocity with destructive technique (cores) in order to implement a relationship ‘‘conversion model” between the compressive strength and NDT measurements. The conversion model is used to estimate the local strength value at each test location using the corresponding NDT value.Then the estimated mean strength and/or estimated strength standard deviation (concrete strength variability) values are calculated. However, the reliability of these estimated values isalways a questionable issue because of the uncertainties associated with the strength assessment based upon NDT measurements. To improve the reliability, the uncertainties must be reduced by specifying and controlling their influencing factors. Therefore, the objective of this thesis is to analyze the current assessment methodology in order to provide practical recommendations that can improve the reliability of assessing the in-situ strength in existing concrete structures by nondestructive tests and cores.To this end, a simulator was built in order to analyze the effects of the most influencing factors using a large campaign of datasets from different sources (in-situ or laboratory studies,and generated synthetic data).The first contribution of this work is the development of a new model identification approach“bi-objective” that can efficiently capture the strength variability in addition to the mean strength. After studying the effect of the way of selection the core locations, a method was proposed to select these locations depending on the NDT measurements “conditional selection” that improves the quality of assessment without additional cost. A third innovation was the development of a procedure to identify the relation between the number of cores and the accuracy of the estimation. Finally recommendations were derived in order to providemore reliable estimated values

    Assessment of concrete strength in existing structures using nondestructive tests and cores : analysis of current methodology and recommendations for more reliable assessment

    No full text
    Pour Ă©valuer la rĂ©sistance mĂ©canique du bĂ©ton dans un ouvrage existant, la mĂ©thodologie courante combine des mesures non destructives (CND) comme le rebond ou/et la vitesse des ondes ultrasoniques avec la technique destructive (carottes) afin de produire une relation‘‘modĂšle de conversion” entre la rĂ©sistance mĂ©canique et les mesures CND. Le modĂšle de conversion est utilisĂ© pour estimer la valeur locale de rĂ©sistance mĂ©canique Ă  chaque emplacement de test en utilisant la valeur CND correspondante. Ensuite, on calcule les estimations de la rĂ©sistance moyenne et/ou de l’écart-type de la rĂ©sistance (variabilitĂ© de la rĂ©sistance du bĂ©ton). Cependant, la fiabilitĂ© d’estimation est toujours discutable en raison des incertitudes associĂ©es Ă  l’évaluation de la rĂ©sistance basĂ©e sur les mesures CND. Pour amĂ©liorer la fiabilitĂ©, les incertitudes doivent ĂȘtre rĂ©duites en spĂ©cifiant et en contrĂŽlant leurs facteurs d’influence. Par consĂ©quent, l’objectif de cette thĂšse est d’analyser la mĂ©thodologie d’évaluation courante afin de fournir des recommandations pratiques qui peuvent amĂ©liorer la fiabilitĂ© de l’évaluation de la rĂ©sistance in-situ du bĂ©ton dans les ouvrages existantes par des tests non destructifs et des carottes.Pour ce but, un simulateur a Ă©tĂ© construit afin d’analyser les effets des facteurs les plus influents en utilisant une vaste campagne de donnĂ©es provenant de sources diffĂ©rentes (Ă©tudes in situ ou en laboratoire et donnĂ©es synthĂ©tiques gĂ©nĂ©rĂ©es). La premiĂšre contribution de ce travail est le dĂ©veloppement d’une nouvelle approche d’identification du modĂšle ‘‘bi-objectif” qui peut efficacement capturer la variabilitĂ© de la rĂ©sistance mĂ©canique en plus de la moyenne. AprĂšs avoir Ă©tudiĂ© l’effet du mode de sĂ©lection des emplacements pour les carottes, une mĂ©thode a Ă©tĂ© proposĂ©e pour sĂ©lectionner ces emplacements en fonction des mesures CND ‘‘sĂ©lection conditionnelle” qui amĂ©liore la qualitĂ© de l’évaluation sans coĂ»t supplĂ©mentaire. Une derniĂšre innovation est l’établissement de courbes de risque qui quantifient la relation entre le nombre de carottes et la prĂ©cision de l’estimation. Enfin, des recommandations ont Ă©tĂ© formulĂ©es afin de fournir des estimations plus fiables.To assess concrete strength in an existing structure, the current methodology combines nondestructive measurements (NDT) like rebound hammer or/and pulse velocity with destructive technique (cores) in order to implement a relationship ‘‘conversion model” between the compressive strength and NDT measurements. The conversion model is used to estimate the local strength value at each test location using the corresponding NDT value.Then the estimated mean strength and/or estimated strength standard deviation (concrete strength variability) values are calculated. However, the reliability of these estimated values isalways a questionable issue because of the uncertainties associated with the strength assessment based upon NDT measurements. To improve the reliability, the uncertainties must be reduced by specifying and controlling their influencing factors. Therefore, the objective of this thesis is to analyze the current assessment methodology in order to provide practical recommendations that can improve the reliability of assessing the in-situ strength in existing concrete structures by nondestructive tests and cores.To this end, a simulator was built in order to analyze the effects of the most influencing factors using a large campaign of datasets from different sources (in-situ or laboratory studies,and generated synthetic data).The first contribution of this work is the development of a new model identification approach“bi-objective” that can efficiently capture the strength variability in addition to the mean strength. After studying the effect of the way of selection the core locations, a method was proposed to select these locations depending on the NDT measurements “conditional selection” that improves the quality of assessment without additional cost. A third innovation was the development of a procedure to identify the relation between the number of cores and the accuracy of the estimation. Finally recommendations were derived in order to providemore reliable estimated values

    Amélioration de la méthodologie d'évaluation non destructive de la résistance mécanique du béton dans les structures existantes

    No full text
    Les mĂ©thodes de contrĂŽle non-destructif (CND) telles que le rebond (R) sont largement utilisĂ©es avec les techniques destructives (ex : prĂ©lĂšvements) pour Ă©valuer la rĂ©sistance mĂ©canique du bĂ©ton sur les bĂątiments existants. Le choix d'une stratĂ©gie efficace pour estimer la rĂ©sistance mĂ©canique du bĂ©ton d'un bĂątiment est un enjeu important. En effet, le gestionnaire d'ouvrages a besoin de cette information pour Ă©valuer correctement l'Ă©tat de ce bĂątiment et prendre les dĂ©cisions adĂ©quates (Ă©chĂ©ances de maintenance, re-calcul de la capacitĂ© portante, durabilitĂ© de l'ouvrage, sĂ©curitĂ©, etc.). Cette Ă©tude vise Ă  fournir les Ă©tapes principales pour la mise en Ɠuvre d'une stratĂ©gie efficace permettant une Ă©valuation plus fiable de la rĂ©sistance mĂ©canique des bĂ©tons in situ. En raison du nombre limitĂ© de donnĂ©es expĂ©rimentales en notre possession, nous avons effectuĂ© des simulations synthĂ©tiques pseudo-alĂ©atoires permettant de contrĂŽler un maximum de paramĂštres. L'avantage d'une telle approche est qu'elle permet de construire une base de donnĂ©es synthĂ©tiques pour simuler diffĂ©rentes configurations et d'estimer l'erreur de prĂ©diction et par consĂ©quent d'Ă©valuer la qualitĂ© de la stratĂ©gie. </div

    Combining the bi-objective approach and conditional coring for a reliable estimation of on-site concrete strength variability

    No full text
    In real practice, to assess concrete strength in structures, engineers usually use non-destructive tests (NDT) (e.g. rebound hammer or ultrasonic pulse velocity) in addition to destructive tests (DT) that are carried out on cores extracted from the structure. The results of these tests (NDT and DT) are used to identify a relationship (a conversion model) between the non-destructive measured features and the concrete strength. This model can be then used to assess the strength at any location within the structure under consideration, as well as the mean strength and the strength standard deviation (strength variability). In fact, the assessment of concrete strength variability is as important as the mean strength since the mean strength alone cannot provide a clear picture about the concrete under investigation. However, due to the presence of many uncertainties, the reliability of the values estimated by NDTs need to be improved. In the present study, a wide range of concretes having mean strengths of 10–50 MPa and concrete strength variabilities of 10–30% (defined by the coefficient of variation) is analysed. The main target of this paper is to analyse how would the reliability of assessing the concrete strength variability changes if the bi-objective method is used as a model identification approach and the conditional coring concept is applied for selecting core locations. Results are analysed in terms of the minimum number of cores NC that corresponds to a specific uncertainty level, concrete characteristics, and quality of NDT measurements. The results show an important improvement in the reliability of assessing the strength variability when both the bi-objective method and conditional coring are applied togethe

    How to Identify the Recommended Number of Cores?

    No full text
    The concrete strength assessment process is influenced by uncertainties at many levels, including random measurement errors, sampling uncertainty and identification of the conversion model parameters. Therefore, instead of estimating the true value of the concrete strength, it is preferable to say that the objective of the assessment process is to predict a strength value ranging at a tolerable distance from the true strength value. This implies a deep revision of the assessment paradigm, in which both the acceptable tolerance interval and the risk of a wrong assessment must be given at the very beginning of the investigation. A large series of simulations has been carried out in order to understand and quantify how, for a given tolerance on the strength estimation, the risk value varies as a function of the precision of measurements, the number of cores and the strength distribution. Empirical models have been identified from the simulation results. These models have been finally used to calculate how many cores are required in various situations, to achieve the accuracy corresponding to three different estimation quality levels. This chapter describes the principles of the simulation, and how their results were used in order to build a series of tables where the recommended number of cores is made available in a variety of situations
    corecore