3 research outputs found

    Virtual deep brain stimulation: Multiscale co-simulation of a spiking basal ganglia model and a whole-brain mean-field model with The Virtual Brain

    Get PDF
    Deep brain stimulation (DBS) has been successfully applied in various neurodegenerative diseases as an effective symptomatic treatment. However, its mechanisms of action within the brain network are still poorly understood. Many virtual DBS models analyze a subnetwork around the basal ganglia and its dynamics as a spiking network with their details validated by experimental data. However, connectomic evidence shows widespread effects of DBS affecting many different cortical and subcortical areas. From a clinical perspective, various effects of DBS besides the motoric impact have been demonstrated. The neuroinformatics platform The Virtual Brain (TVB) offers a modeling framework allowing us to virtually perform stimulation, including DBS, and forecast the outcome from a dynamic systems perspective prior to invasive surgery with DBS lead placement. For an accurate prediction of the effects of DBS, we implement a detailed spiking model of the basal ganglia, which we combine with TVB via our previously developed co-simulation environment. This multiscale co-simulation approach builds on the extensive previous literature of spiking models of the basal ganglia while simultaneously offering a whole-brain perspective on widespread effects of the stimulation going beyond the motor circuit. In the first demonstration of our model, we show that virtual DBS can move the firing rates of a Parkinson's disease patient's thalamus - basal ganglia network towards the healthy regime while, at the same time, altering the activity in distributed cortical regions with a pronounced effect in frontal regions. Thus, we provide proof of concept for virtual DBS in a co-simulation environment with TVB. The developed modeling approach has the potential to optimize DBS lead placement and configuration and forecast the success of DBS treatment for individual patients

    Exploration behavior after reversals is predicted by STN-GPe synaptic plasticity in a basal ganglia model

    No full text
    Summary: Humans can quickly adapt their behavior to changes in the environment. Classical reversal learning tasks mainly measure how well participants can disengage from a previously successful behavior but not how alternative responses are explored. Here, we propose a novel 5-choice reversal learning task with alternating position-reward contingencies to study exploration behavior after a reversal. We compare human exploratory saccade behavior with a prediction obtained from a neuro-computational model of the basal ganglia. A new synaptic plasticity rule for learning the connectivity between the subthalamic nucleus (STN) and external globus pallidus (GPe) results in exploration biases to previously rewarded positions. The model simulations and human data both show that during experimental experience exploration becomes limited to only those positions that have been rewarded in the past. Our study demonstrates how quite complex behavior may result from a simple sub-circuit within the basal ganglia pathways

    A computational model‐based analysis of basal ganglia pathway changes in Parkinson’s disease inferred from resting‐state fMRI

    No full text
    Previous computational model-based approaches for understanding the dynamic changes related to Parkinson's disease made particular assumptions about Parkinson's disease-related activity changes or specified dopamine-dependent activation or learning rules. Inspired by recent model-based analysis of resting-state fMRI, we have taken a data-driven approach. We fit the free parameters of a spiking neuro-computational model to match correlations of blood oxygen level-dependent signals between different basal ganglia nuclei and obtain subject-specific neuro-computational models of two subject groups: Parkinson patients and matched controls. When comparing mean firing rates at rest and connectivity strengths between the control and Parkinsonian model groups, several significant differences were found that are consistent with previous experimental observations. We discuss the implications of our approach and compare its results also with the popular “rate model” of the basal ganglia. Our study suggests that a model-based analysis of imaging data from healthy and Parkinsonian subjects is a promising approach for the future to better understand Parkinson-related changes in the basal ganglia and corresponding treatments
    corecore