465 research outputs found

    Plant cover and management practices as drivers of soil quality

    Get PDF
    Human activities intensively modify soil properties and quality according to land-use and management practices. In Mediterranean areas, pollution and fires may directly alter some soil abiotic properties as well as the steady-state condition of soil microbiota. The aim of this study was to evaluate if the chemical and biological characteristics of two kinds of soil, Arenosols and Andosols, of a natural reserve and an urban park respectively, were affected by the same or different plant covers (trees and grasses). At each site, five sub-samples of surface soils (0–10 cm) were collected under maquis (trees) and gap of grasses. The soils were analyzed for physico-chemical parameters (organic matter and water contents, pH, C, N, Cr, Cu, Ni and Pb concentrations) and biological parameters (microbial and fungal biomass, respiration, metabolic quotient and coefficient of endogenous mineralization). The soil quality was evaluated through an integrated index, calculated taken into account all the investigated parameters. The results highlighted that soils under trees inside the urban park, with the highest amount of organic matter, showed higher microbial biomass and activity as compared to soils under grasses. The high concentration of Cu and Pb in these latter soils inhibited the microbial biomass and activity that were not exclusively affected by litter quality. Soil quality would seem to be strongly affected by the pedogenetic derivation and the management practices more than plant covers

    Un-biodegradable and biodegradable plastic sheets modify the soil properties after six months since their applications

    Get PDF
    Nowadays, microplastics represent emergent pollutants in terrestrial ecosystems that exert impacts on soil properties, affecting key soil ecological functions. In agroecosystems, plastic mulching is one of the main sources of plastic residues in soils. The present research aimed to evaluate the effects of two types of plastic sheets (un-biodegradable and biodegradable) on soil abiotic (pH, water content, concentrations of organic and total carbon, and total nitrogen) and biotic (respiration, and activities of hydrolase, dehydrogenase, β-glucosidase and urease) properties, and on phytotoxicity (germination index of Sorghum saccharatum L. and Lepidium sativum L.). Results revealed that soil properties were mostly affected by exposure time to plastics rather than the kind (un-biodegradable and biodegradable) of plastics. After six months since mesocosm setting up, the presence of un-biodegradable plastic sheets significantly decreased soil pH, respiration and dehydrogenase activity and increased total and organic carbon concentrations, and toxicity highlighted by S. saccharatum L. Instead, the presence of biodegradable plastic sheets significantly decreased dehydrogenase activity and increased organic carbon concentrations. An overall temporal improvement of the investigated properties in soils covered by biodegradable plastic sheets occurred

    Variation of the chemical and biological properties of a Technosol during seven years after a single application of compost

    Get PDF
    Technosols are composed of natural soils mixed with artificial materials and can be an inhospitable environment for the soil microbial community. The main goal of the current research was to evaluate temporal variations of Technosol quality through an integrated approach, considering all of the evaluated chemical, physical and biological characteristics for a period of seven years after a single application of compost. The soil samples were evaluated using the following parameters: pH; water content; water holding capacity; bulk density; porosity; organic matter and N contents; C/N ratio; fungal biomass; microbial biomass; respiration; metabolic quotient (qCO 2 ); and endogenous mineralisation coefficient (CEM). The overall evaluation showed that a single application of compost improved the soil quality in the short term. A decrease in Technosol quality over the long term appears to be due to deterioration of the physical and chemical properties, rather than a change in biological properties

    Cardioprotective Effects of Taurisolo® in Cardiomyoblast H9c2 Cells under High-Glucose and Trimethylamine N-Oxide Treatment via de Novo Sphingolipid Synthesis

    Get PDF
    In addition to high plasma glucose, increased levels of trimethylamine N-oxide (TMAO) have been found in obese subjects, where are considered as a novel risk factor for cardiovascular diseases. The present study aimed to investigate the effect of a novel nutraceutical formulation based on grape polyphenols (registered as Taurisolo®) in counteracting TMAO- and high glucose (HG)-induced cytotoxicity in cardiomyoblast H9c2 cells. Cell damage was induced with HG (HG-H9c2) and HG+TMAO (THG-H9c2); both experimental cell models were, thus, incubated for 72 h in the presence or absence of Taurisolo®. It was observed that Taurisolo® significantly increased the cell viability and reduced lactate dehydrogenase and aspartate transaminase release in both HG- and THG-H9c2 cells. Additionally, through its antioxidant activity, Taurisolo® modulated cell proliferation via ERK activation in THG-H9c2. Furthermore, Taurisolo® was able to induce autophagic process via increasing the expression of LC3II, a protein marker involved in formation of autophagosome and ex novo synthesis of sphingomyelin, ceramides, and their metabolites both in HG- and THG-H9c2 cells. Finally, Taurisolo® reduced hypertrophy and induced differentiation of HG-H9C2 cells into cardiomyocyte-like cells. These data suggest that Taurisolo® counteracts the toxicity induced by TMAO and HG concentrations increasing autophagic process and activating de novo sphingolipid synthesis, resulting in a morphological cell remodeling. In conclusion, our results allow speculating that Taurisolo®, combined with energy restriction, may represent a useful nutraceutical approach for prevention of cardiomyopathy in obese subjects

    A framework to identify structured behavioral patterns within rodent spatial trajectories

    Get PDF
    Animal behavior is highly structured. Yet, structured behavioral patterns—or “statistical ethograms”—are not immediately apparent from the full spatiotemporal data that behavioral scientists usually collect. Here, we introduce a framework to quantitatively characterize rodent behavior during spatial (e.g., maze) navigation, in terms of movement building blocks or motor primitives. The hypothesis that we pursue is that rodent behavior is characterized by a small number of motor primitives, which are combined over time to produce open-ended movements. We assume motor primitives to be organized in terms of two sparsity principles: each movement is controlled using a limited subset of motor primitives (sparse superposition) and each primitive is active only for time-limited, time-contiguous portions of movements (sparse activity). We formalize this hypothesis using a sparse dictionary learning method, which we use to extract motor primitives from rodent position and velocity data collected during spatial navigation, and successively to reconstruct past trajectories and predict novel ones. Three main results validate our approach. First, rodent behavioral trajectories are robustly reconstructed from incomplete data, performing better than approaches based on standard dimensionality reduction methods, such as principal component analysis, or single sparsity. Second, the motor primitives extracted during one experimental session generalize and afford the accurate reconstruction of rodent behavior across successive experimental sessions in the same or in modified mazes. Third, in our approach the number of motor primitives associated with each maze correlates with independent measures of maze complexity, hence showing that our formalism is sensitive to essential aspects of task structure. The framework introduced here can be used by behavioral scientists and neuroscientists as an aid for behavioral and neural data analysis. Indeed, the extracted motor primitives enable the quantitative characterization of the complexity and similarity between different mazes and behavioral patterns across multiple trials (i.e., habit formation). We provide example uses of this computational framework, showing how it can be used to identify behavioural effects of maze complexity, analyze stereotyped behavior, classify behavioral choices and predict place and grid cell displacement in novel environments

    Association of the chronotype score with circulating trimethylamine n‐oxide (Tmao) concentrations

    Get PDF
    Individual differences in the chronotype, an attitude that best expresses the individual circadian preference in behavioral and biological rhythms, have been associated with cardiometabolic risk and gut dysbiosis. Up to now, there are no studies evaluating the association between chronotypes and circulating TMAO concentrations, a predictor of cardiometabolic risk and a useful marker of gut dysbiosis. In this study population (147 females and 100 males), subjects with the morning chronotype had the lowest BMI and waist circumference (p < 0.001), and a better metabolic profile compared to the other chronotypes. In addition, the morning chronotype had the highest adherence to the Mediterranean diet (p < 0.001) and the lowest circulating TMAO concentrations (p < 0.001). After adjusting for BMI and adherence to the Mediterranean diet, the correlation between circulating TMAO concentrations and chronotype score was still kept (r = −0.627, p < 0.001). Using a linear regression analysis, higher chronotype scores were mostly associated with lower circulating TMAO concentrations (β = −0.479, t = −12.08, and p < 0.001). Using a restricted cubic spline analysis, we found that a chronotype score ≥59 (p < 0.001, R2 = −0.824) demonstrated a more significant inverse linear relationship with circulating TMAO concentrations compared with knots <59 (neither chronotype) and <41 (evening chronotype). The current study reported the first evidence that higher circulating TMAO concentrations were associated with the evening chronotype that, in turn, is usually linked to an unhealthy lifestyle mostly characterized by low adherence to the MD

    Combined effects of wildfire and vegetation cover type on volcanic soil (Functions and properties) in a mediterranean region: Comparison of two soil quality indices

    Get PDF
    Mediterranean regions are the most impacted by fire in Europe. The effects of fire on soil greatly vary according to several factors such as vegetation cover type, but they are scarcely studied. Therefore, this research aimed at evaluating the combined impacts of fire and vegetation on single soil characteristics and on the overall soil quality and functionality through two soil quality indices, simple additive (SQI) and a weighted function (SQIFUNCT). In order to reach the aims, burnt and unburnt soils were collected under different vegetation cover types (herbs and shrubs, black locust, pine and holm oak) within the Vesuvius National Park. The soils were analyzed for the main abiotic (water and organic matter content, total C, N, Ca, K, Cu and Pb concentrations, C/N ratio) and biotic (microbial and fungal biomasses, basal respiration, β-glucosidase activity) characteristics. On the basis of the investigated soil characteristics, several soil functions (water retention, nutrient supply, contamination content, microorganism habitat and activities), and the soil quality indices were calculated. The results showed that the impact of fire on soil quality and functionality was mediated by the vegetation cover type. In fact, fire occurrence led to a decrease in water and C/N ratio under herbs, a decrease in C concentration under holm oak and a decrease in Cu and Pb concentrations under pine. Although the soil characteristics showed significant changes according to vegetation cover types and fire occurrence, both the additive and weighted function soil quality indices did not significantly vary according to both fire occurrence and the vegetation cover type. Among the different vegetation cover types, pine was the most impacted one

    Impact of anthropic activities on soil quality under different land uses

    Get PDF
    Anthropization often leads to land use transformation, causing deep changes to soil properties and its quality. Land use change could be an environmental and socioeconomic problem, as it impacts soil quality and ecosystem services. There is an urgent need to understand the pressures affecting soil quality. The aim of the work is to quantify the impact of different land uses on soil abiotic and biotic properties and on its quality. To achieve the aims, soils from different land uses (forest, urban and agricultural) were collected in the surroundings of Naples and analyzed for pH, water content, contents of C and N, C/N ratio and total and available concentrations of Cu, Ni and Pb, microbial and fungal biomasses, basal respiration and metabolic quotient. Then, a soil quality index (SQI) was calculated for each land use. The results showed that soil abiotic and biotic properties of the agricultural sites differed from those of forest and urban sites. At agricultural sites, microbial abundances decreased due to low amount of C and N and to high amount of Cu and Pb. This caused low use efficiency of energetic substrates and a reduced soil quality of agricultural sites as compared to forest and urban sites

    Activation of melanocortin receptors MC1 and MC5 attenuates retinal damage in experimental diabetic retinopathy

    Get PDF
    We hypothesize that melanocortin receptors (MC) could activate tissue protective circuit in a model of streptozotocin- (STZ-) induced diabetic retinopathy (DR) in mice. At 12–16 weeks after diabetes induction, fluorescein angiography (FAG) revealed an approximate incidence of 80% microvascular changes, typical of DR, in the animals, without signs of vascular leakage. Occludin progressively decreased in the retina of mice developing retinopathy. qPCR of murine retina revealed expression of two MC receptors, Mc1r and Mc5r. The intravitreal injection (5 \u1d707L) of the selective MC1 small molecule agonist BMS-470539 (33 \u1d707mol) and the MC5 peptidomimetic agonist PG-901 (7.32 nM) elicited significant protection with regular course and caliber of retinal vessels, as quantified at weeks 12 and 16 after diabetes induction. Mouse retina homogenate settings indicated an augmented release of IL-1\u1d6fc, IL-1\u1d6fd, IL-6, MIP-1\u1d6fc, MIP-2\u1d6fc, MIP-3\u1d6fc, and VEGF from diabetic compared to nondiabetic mice. Application of PG20N or AGRP and MC5 and MC1 antagonist, respectively, augmented the release of cytokines, while the agonists BMS-470539 and PG-901 almost restored normal pattern of these mediators back to nondiabetic values. Similar changes were quantified with respect to Ki-67 staining. Finally, application of MC3-MC4 agonist/antagonists resulted to be inactive with respect to all parameters under assessment
    corecore