24 research outputs found

    Differential Gene Expression Changes in Children with Severe Dengue Virus Infections

    Get PDF
    Dengue virus infection is an impressively emerging disease that can be fatal in severe cases. It is not precisely clear why some patients progress to severe disease whereas most patients only suffer from a mild infection. In severe disease, a “cytokine storm” is induced, which indicates the release of a great number of inflammatory mediators (“cytokines”). Evidence suggested that a balance could be involved between protective and pathologic cytokine release patterns. We studied this concept in a cohort of Indonesian children with severe dengue disease using a gene expression profiling method

    Imaginal Discs – A New Source of Chromosomes for Genome Mapping of the Yellow Fever Mosquito Aedes aegypti

    Get PDF
    Dengue fever is an emerging health threat to as much as half of the human population around the world. No vaccines or drug treatments are currently available. Thus, disease prevention is largely based on efforts to control its major mosquito vector Ae. aegypti. Novel vector control strategies, such as population replacement with pathogen-incompetent transgenic mosquitoes, rely on detailed knowledge of the genome organization for the mosquito. However, the current genome assembly of Ae. aegypti is highly fragmented and requires additional physical mapping onto chromosomes. The absence of readable polytene chromosomes makes genome mapping for this mosquito extremely challenging. In this study, we discovered and investigated a new source of chromosomes useful for the cytogenetic analysis in Ae. aegypti – mitotic chromosomes from imaginal discs of 4th instar larvae. Using natural banding patterns of these chromosomes, we developed a new band-based approach for physical mapping of DNA probes to the precise chromosomal positions. Further application of this approach for genome mapping will greatly enhance the utility of the existing draft genome sequence assembly for Ae. aegypti and thereby facilitate application of advanced genome technologies for investigating and developing novel genetic control strategies for dengue transmission

    Pentraxin 3 (PTX3) Is Associated with Severe Sepsis and Fatal Disease in Emergency Room Patients with Suspected Infection: A Prospective Cohort Study

    Get PDF
    Background Early diagnostic and prognostic stratification of patients with suspected infection is a difficult clinical challenge. We studied plasma pentraxin 3 (PTX3) upon admission to the emergency department in patients with suspected infection. Methods The study comprised 537 emergency room patients with suspected infection: 59 with no systemic inflammatory response syndrome (SIRS) and without bacterial infection (group 1), 67 with bacterial infection without SIRS (group 2), 54 with SIRS without bacterial infection (group 3), 308 with sepsis (SIRS and bacterial infection) without organ failure (group 4) and 49 with severe sepsis (group 5). Plasma PTX3 was measured on admission using a commercial solid-phase enzyme-linked immunosorbent assay (ELISA). Results The median PTX3 levels in groups 1–5 were 2.6 ng/ml, 4.4 ng/ml, 5.0 ng/ml, 6.1 ng/ml and 16.7 ng/ml, respectively (p<0.001). The median PTX3 concentration was higher in severe sepsis patients compared to others (16.7 vs. 4.9 ng/ml, p<0.001) and in non-survivors (day 28 case fatality) compared to survivors (14.1 vs. 5.1 ng/ml, p<0.001). A high PTX3 level predicted the need for ICU stay (p<0.001) and hypotension (p<0.001). AUCROC in the prediction of severe sepsis was 0.73 (95% CI 0.66–0.81, p<0.001) and 0.69 in case fatality (95% CI 0.58–0.79, p<0.001). PTX3 at a cut-off level for 14.1 ng/ml (optimal cut-off value for severe sepsis) showed 63% sensitivity and 80% specificity. At a cut-off level 7.7 ng/ml (optimal cut-off value for case fatality) showed 70% sensitivity and 63% specificity in predicting case fatality on day 28.In multivariate models, high PTX3 remained an independent predictor of severe sepsis and case fatality after adjusting for potential confounders. Conclusions A high PTX3 level on hospital admission predicts severe sepsis and case fatality in patients with suspected infection.Public Library of Science open acces

    Case reports

    No full text
    corecore