3,185 research outputs found

    Fast and secure key distribution using mesoscopic coherent states of light

    Full text link
    This work shows how two parties A and B can securely share sequences of random bits at optical speeds. A and B possess true-random physical sources and exchange random bits by using a random sequence received to cipher the following one to be sent. A starting shared secret key is used and the method can be described as an unlimited one-time-pad extender. It is demonstrated that the minimum probability of error in signal determination by the eavesdropper can be set arbitrarily close to the pure guessing level. Being based on the MM-ry encryption protocol this method also allows for optical amplification without security degradation, offering practical advantages over the BB84 protocol for key distribution.Comment: 11 pages and 4 figures. This version updates the one published in PRA 68, 052307 (2003). Minor changes were made in the text and one section on Mutual Information was adde

    Fluctuations of a Greenlandic tidewater glacier driven by changes in atmospheric forcing : observations and modelling of Kangiata Nunaata Sermia, 1859–present

    Get PDF
    Acknowledgements. The authors wish to thank Stephen Price, Mauri Pelto, and the anonymous reviewer for their reviews and comments that helped to improve the manuscript. RACMO2.1 data were provided by Jan van Angelen and Michiel van den Broeke, IMAU, Utrecht University. MAR v3.2 data used for runoff calculations were provided by Xavier Fettweis, Department of Geography, University of Liège. The photogrammetric DEM used in Figs. 1 and 3 was provided by Kurt H. Kjær, Centre for GeoGenetics, University of Copenhagen. This research was financially supported by J. M. Lea’s PhD funding, NERC grant number NE/I528742/1. Support for F. M. Nick was provided through the Conoco-Phillips/Lundin Northern Area Program CRIOS project (Calving Rates and Impact on Sea Level).Peer reviewedPublisher PD

    Findings from a pilot randomised trial of an asthma internet self-management intervention (RAISIN)

    Get PDF
    <b>Objective </b>To evaluate the feasibility of a phase 3 randomised controlled trial (RCT) of a website (Living Well with Asthma) to support self-management.<p></p> <b>Design and setting</b> Phase 2, parallel group, RCT, participants recruited from 20 general practices across Glasgow, UK. Randomisation through automated voice response, after baseline data collection, to website access for minimum 12 weeks or usual care.<p></p> <b>Participants </b>Adults (age≥16 years) with physician diagnosed, symptomatic asthma (Asthma Control Questionnaire (ACQ) score ≥1). People with unstable asthma or other lung disease were excluded.<p></p> <b>Intervention</b> Living Well with Asthma’ is a desktop/ laptop compatible interactive website designed with input from asthma/ behaviour change specialists, and adults with asthma. It aims to support optimal medication management, promote use of action plans, encourage attendance at asthma reviews and increase physical activity.<p></p> <b>Outcome measures</b> Primary outcomes were recruitment/retention, website use, ACQ and mini- Asthma Quality of Life Questionnaire (AQLQ). Secondary outcomes included patient activation, prescribing, adherence, spirometry, lung inflammation and health service contacts after 12 weeks. Blinding postrandomisation was not possible.<p></p> <b>Results </b>Recruitment target met. 51 participants randomised (25 intervention group). Age range 16–78 years; 75% female; 28% from most deprived quintile. 45/51 (88%; 20 intervention group) followed up. 19 (76% of the intervention group) used the website, for a mean of 18 min (range 0–49). 17 went beyond the 2 ‘core’ modules. Median number of logins was 1 (IQR 1–2, range 0–7). No significant difference in the prespecified primary efficacy measures of ACQ scores (−0.36; 95% CI −0.96 to 0.23; p=0.225), and mini-AQLQ scores (0.38; −0.13 to 0.89; p=0.136). No adverse events.<p></p> <b>Conclusions</b> Recruitment and retention confirmed feasibility; trends to improved outcomes suggest use of Living Well with Asthma may improve self-management in adults with asthma and merits further development followed by investigation in a phase 3 trial

    Storage of light in atomic vapor

    Full text link
    We report an experiment in which a light pulse is decelerated and trapped in a vapor of Rb atoms, stored for a controlled period of time, and then released on demand. We accomplish this storage of light by dynamically reducing the group velocity of the light pulse to zero, so that the coherent excitation of the light is reversibly mapped into a collective Zeeman (spin) coherence of the Rb vapor

    Detecting Recent Dynamics in Large-Scale Landslides via the Digital Image Correlation of Airborne Optic and LiDAR Datasets: Test Sites in South Tyrol (Italy)

    Get PDF
    Large-scale slow-moving deep-seated landslides are complex and potentially highly damaging phenomena. The detection of their dynamics in terms of displacement rate distribution is therefore a key point to achieve a better understanding of their behavior and support risk management. Due to their large dimensions, ranging from 1.5 to almost 4 km(2), in situ monitoring is generally integrated using satellite and airborne remote sensing techniques. In the framework of the EFRE-FESR SoLoMon project, three test-sites located in the Autonomous Province of Bolzano (Italy) were selected for testing the possibility of retrieving significant slope displacement data from the analysis of multi-temporal airborne optic and light detection and ranging (LiDAR) surveys with digital image correlation (DIC) algorithms such as normalized cross-correlation (NCC) and phase correlation (PC). The test-sites were selected for a number of reasons: they are relevant in terms of hazard and risk; they are representative of different type of slope movements (earth-slides, deep seated gravitational slope Deformation and rockslides), and different rates of displacement (from few cm/years to some m/years); and they have been mapped and monitored with ground-based systems for many years (DIC results can be validated both qualitatively and quantitatively). Specifically, NCC and PC algorithms were applied to high-resolution (5 to 25 cm/px) airborne optic and LiDAR-derived datasets (such as hillshade and slope maps computed from digital terrain models) acquired during the 2019-2021 period. Qualitative and quantitative validation was performed based on periodic GNSS surveys as well as on manual homologous point tracking. The displacement maps highlight that both DIC algorithms succeed in identifying and quantifying slope movements of multi-pixel magnitude in non-densely vegetated areas, while they struggle to quantify displacement patterns in areas characterized by movements of sub-pixel magnitude, especially if densely vegetated. Nonetheless, in all three landslides, they proved to be able to differentiate stable and active parts at the slope scale, thus representing a useful integration of punctual ground-based monitoring systems
    corecore