6 research outputs found

    Proper orthogonal decomposition of ice velocity identifies drivers of flow variability at Sermeq Kujalleq (Jakobshavn Isbr AE)

    Get PDF
    Abstract. The increasing volume and spatio-temporal resolution of satellite-derived ice velocity data has created new exploratory opportunities for the quantitative analysis of glacier dynamics. One potential technique, Proper Orthogonal Decomposition (POD), also known as Empirical Orthogonal Functions, has proven to be a powerful and flexible technique for revealing coherent structures in a wide variety of environmental flows. In this study we investigate the applicability of POD to an openly available TanDEM-X/TerraSAR-X derived ice velocity dataset from Sermeq Kujalleq (Jakobshavn Isbræ), Greenland. We find three dominant modes with annual periodicity that we argue are explained by glaciological processes. Mode 1 is interpreted as relating to the stress-reconfiguration at the glacier terminus, known to be an important control on the glacier’s dynamics. Modes 2 and 3 together relate to the development of the spatially heterogenous glacier hydrological system and are primarily driven by the pressurisation and efficiency of the subglacial hydrological system. During the melt season, variations in the velocity shown in Modes 2 and 3 are explained by the drainage of nearby supraglacial melt ponds, as identified with a Google Earth Engine MODIS dynamic thresholding technique. By isolating statistical structures within velocity datasets, and through their comparison to glaciological theory and complementary datasets POD indicates which glaciological processes are responsible for the changing bulk velocity signal, as observed from space. With the proliferation of optical and radar derived velocity products (e.g. MEaSUREs/ESA CCI/PROMICE) we suggest POD, and potentially other modal decomposition techniques, will become increasingly useful in future studies of ice dynamics. </jats:p

    Greenland tidewater glacier advanced rapidly during era of Norse settlement

    Get PDF
    Our ability to improve prognostic modeling of the Greenland Ice Sheet relies on understanding the long-term relationships between climate and mass flux (via iceberg calving) from marine-terminating tidewater glaciers (TWGs). Observations of recent TWG behavior are widely available, but long-term records of TWG advance are currently lacking. We present glacial geomorphological, sedimentological, archaeological, and modeling data to reconstruct the ~20 km advance of Kangiata Nunaata Sermia (KNS; the largest tidewater glacier in southwest Greenland) during the first half of the past millennium. The data show that KNS advanced ~15 km during the 12th and 13th centuries CE at a rate of ~115 m a–1, contemporaneous with regional climate cooling toward the Little Ice Age and comparable to rates of TWG retreat witnessed over the past ~200 years. Presence of Norse farmsteads proximal to KNS demonstrates their resilience to climate change, manifest as a rapidly advancing TWG in a cooling climate. The results place limits on the magnitude of ice-margin advance and demonstrate TWG sensitivity to climate cooling as well as warming. These data combined with our grounding-line stability analysis provide a long-term record that validates approaches to numerical modeling aiming to link calving to climate

    Modelling the delivery of supraglacial meltwater to the ice/bed interface: application to southwest Devon Ice Cap, Nunavut, Canada

    Get PDF
    AbstractThe transfer of surface-generated meltwater to the subglacial drainage system through full ice thickness crevassing may lead to accelerated glacier velocities, with implications for ice motion under future climatic scenarios. Accurate predictions of where surface meltwater accesses the ice/bed interface are therefore needed in fully coupled hydrodynamic ice-sheet models. We present a spatially distributed modelling routine for predicting the location and timing of delivery of surface-derived meltwater to the ice/bed interface through moulins and supraglacial lake drainage. The model is explained as it is applied to the Croker Bay glacial catchment of Devon Ice Cap, Canada. The formation of moulins, drainage of lakes, and the transfer of meltwater through the full ice thickness are modelled for the 2004 and 2006 ablation seasons. Through this case study we assess the model’s sensitivity to degree-day factors, fracture toughness, tensile strength and crevasse width, and confirm that parameters influencing the rate at which water fills a crevasse are the most significant controls on the ability of a crevasse to reach the bed. Increased surface melt production, therefore, has the potential to significantly influence the spatial and temporal transfer of meltwater through surface-to-bed connections in a warmer climate</jats:p

    General Introduction and History of Hernia Surgery

    No full text

    Airway Epithelium

    No full text
    corecore