352 research outputs found

    Multi-layer Gaussian-based multi-configuration time-dependent Hartree (ML-GMCTDH) simulations of ultrafast charge separation in a donor–acceptor complex

    Get PDF
    We report on first applications of the Multi-Layer Gaussian-based Multi-Configuration Time-Dependent Hartree (ML-GMCTDH) method [Römer et al., J. Chem. Phys. 138, 064106 (2013)] beyond its basic two-layer variant. The ML-GMCTDH scheme provides an embedding of a variationally evolving Gaussian wavepacket basis into a hierarchical tensor representation of the wavefunction. A first-principles parameterized model Hamiltonian for ultrafast non-adiabatic dynamics in an oligothiophene–fullerene charge transfer complex is employed, relying on a two-state linear vibronic coupling model that combines a distribution of tuning type modes with an intermolecular coordinate that also modulates the electronic coupling. Efficient ML-GMCTDH simulations are carried out for up to 300 vibrational modes using an implementation within the QUANTICS program. Excellent agreement with reference ML-MCTDH calculations is obtained

    Spitzer-IRAC survey of molecular jets in Vela-D

    Full text link
    We present a survey of H2 jets from young protostars in the Vela-D molecular cloud (VMR-D), based on Spitzer -IRAC data between 3.6 and 8.0 micron. Our search has led to the identification of 15 jets and about 70 well aligned knots within 1.2 squared degree. We compare the IRAC maps with observations of the H2 1-0 S(1) line at 2.12 micron, with a Spitzer-MIPS map at 24 and 70 micron, and with a map of the dust continuum emission at 1.2 mm. We find a association between molecular jets and dust peaks. The jet candidate exciting sources have been searched for in the published catalog of the Young Stellar Objects of VMR-D. We selected all the sources of Class II or earlier which are located close to the jet center and aligned with it.The association between jet and exciting source was validated by estimating the differential extinction between the jet opposite lobes. We are able to find a best-candidate exciting source in all but two jets. Four exciting sources are not (or very barely) observed at wavelengths shorter than 24 micron, suggesting they are very young protostars. Three of them are also associated with the most compact jets. The exciting source Spectral Energy Distributions have been modeled by means of the photometric data between 1.2 micron and 1.2 mm. From SEDs fits we derive the main source parameters, which indicate that most of them are low-mass protostars. A significant correlation is found between the projected jet length and the [24] - [70] color, which is consistent with an evolutionary scenario according to which shorter jets are associated with younger sources. A rough correlation is found between IRAC line cooling and exciting source bolometric luminosity, in agreement with the previous literature. The emerging trend suggests that mass loss and mass accretion are tightly related phenomena and that both decrease with time.Comment: Accepted by The Astrophysical Journa

    A RANDOMIZED, DOUBLE-BLIND, CROSS-OVER STUDY COMPARING A LEVOSULPIRIDE-BASED AND A METOCLOPRAMIDE-BASED COMBINATION IN THE PREVENTION OF PROMECE-CYTABOM-INDUCED EMESIS

    Get PDF
    Background. To test two different antiemetic regimens for preventing nausea and vomiting in patients with non-Hodgkin's lymphoma (NHL) undergoing systemic chemotherapy (CT) with ProMECE-CytaBOM (P-C). Patients and Methods. Twenty consecutive untreated adult outpatients with histologically confirmed NHL and scheduled to receive P-C chemotherapy were registered in a randomized, double-blind, cross-over study to compare the antiemetic efficacy of a levosulpiride (LS)-based and metoclopramide (MTC)-based regimen. Results. Complete protection from vomiting was recorded in 93% (62/67) of courses with the LS-regimen and in 89% (62/70) with the MTC-regimen (p = 0.428). No nausea was observed in 84% (56/67) of courses with the LS-regimen and in 74% (52/70) with the MTC-regimen (p = 0.183). No differences in prevention of emesis were recorded when patients crossed to the other regimen. Both regimens were well tolerated; however, on day 8 of chemotherapy, when both antiemetic regimens were administered at a higher dose, the LS-based combination showed significantly lower toxicity (p = 0.035). Conclusions. ProMECE-CytaBOM-induced emesis can be prevented in most cases with appropriate, specifically designed antiemetic therapy. Both the LS- and MTC-based combinations resulted in a high percentage of complete protection from emesis, but the higher incidence of side effects observed with MTC makes the LS-based regimen preferable for patients receiving P-C chemotherapy

    Optical properties of highly n-doped germanium obtained by in situ doping and laser annealing

    Get PDF
    High n-type doping in germanium is essential for many electronic and optoelectronic applications especially for high performance Ohmic contacts, lasing and mid-infrared plasmonics. We report on the combination of in situ doping and excimer laser annealing to improve the activation of phosphorous in germanium. An activated n-doping concentration of 8.8  ×  1019 cm−3 has been achieved starting from an incorporated phosphorous concentration of 1.1  ×  1020 cm−3. Infrared reflectivity data fitted with a multi-layer Drude model indicate good uniformity over a 350 nm thick layer. Photoluminescence demonstrates clear bandgap narrowing and an increased ratio of direct to indirect bandgap emission confirming the high doping densities achieved

    XMM-Newton observation of MACHO 104.20906.960: a dwarf nova candidate with a 2 h period

    Full text link
    The binaries known as cataclysmic variables are particular binary systems in which the primary star (a white dwarf) accretes material from a secondary via Roche-lobe mechanism. Usually, these objects have orbital period of a few hours so that a detailed temporal analysis can be performed. Here, we present Chandra XMM{\it XMM}-Newton observations of a dwarf nova candidate identified in the past by optical observations towards the galactic Bulge and labeled as MACHO 104.20906.960. After a spectral analysis, we used the Lomb-Scargle technique for the period search and evaluated the confidence level using Monte-Carlo simulations. In this case, we found that the XX-ray source shows a period of 2.03−0.07+0.092.03_{-0.07}^{+0.09} hours (3σ\sigma error) so that it is most likely a system of interacting objects. The modulation of the signal was found with a confidence level of >>99%. The spectrum can be described by a two thermal plasma components with X-ray flux in the 0.3--10 keV energy band of 1.77−0.19+0.16×10−131.77_{-0.19}^{+0.16}\times10^{-13} erg s−1^{-1} cm−2^{-2}. We find that the distance of the source is approximately 1 kpc thus corresponding to a luminosity LX≃2×1031L_{X}\simeq 2\times 10^{31} erg s−1^{-1}.Comment: 2008, in press on New Astronomy, (http://www.elsevier.com/wps/find/journaldescription.cws_home/601274/description#description); XMM-Newton observation of MACHO 104.20906.960: a dwarf nova candidate with a 2 h perio

    The YSO Population in the Vela-D Molecular Cloud

    Get PDF
    We investigate the young stellar population in the Vela Molecular Ridge, Cloud-D (VMR-D), a star forming (SF) region observed by both Spitzer/NASA and Herschel/ESA space telescope. The point source, band-merged, Spitzer-IRAC catalog complemented with MIPS photometry previously obtained is used to search for candidate young stellar objects (YSO), also including sources detected in less than four IRAC bands. Bona fide YSO are selected by using appropriate color-color and color-magnitude criteria aimed to exclude both Galatic and extragalactic contaminants. The derived star formation rate and efficiency are compared with the same quantities characterizing other SF clouds. Additional photometric data, spanning from the near-IR to the submillimeter, are used to evaluate both bolometric luminosity and temperature for 33 YSOs located in a region of the cloud observed by both Spitzer and Herschel. The luminosity-temperature diagram suggests that some of these sources are representative of Class 0 objects with bolometric temperatures below 70 K and luminosities of the order of the solar luminosity. Far IR observations from the Herschel/Hi-GAL key project for a survey of the Galactic plane are also used to obtain a band-merged photometric catalog of Herschel sources aimed to independently search for protostars. We find 122 Herschel cores located on the molecular cloud, 30 of which are protostellar and 92 starless. The global protostellar luminosity function is obtained by merging the Spitzer and Herschel protostars. Considering that 10 protostars are found in both Spitzer and Herschel list it follows that in the investigated region we find 53 protostars and that the Spitzer selected protostars account for approximately two-thirds of the total.Comment: 40 pages, 12 figures, accepted for publication in Ap
    • …
    corecore