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I. INTRODUCTION

Moving Gaussian basis sets are a highly attractive way of representing quantum evolu-

tion, combining a trajectory type representation with quantum non-locality. These methods

have a long tradition in semiclassical dynamics and include classically evolving Gaussian

wavepackets (GWPs),1,2 notably Heller’s Thawed Gaussians (TGs)3 and Frozen Gaussians

(FGs),4 variationally evolving GWPs,5 and variational GWP superpositions.6,7 Over recent

years, many methods have been developed that are built on these basic concepts, e.g., the

Full Multiple Spawning (FMS) approach,8 the Coupled Coherent States method,9 the multi-

configurational Ehrenfest approach,10,11 and the variational Multi-Configurational Gaussian

(vMCG) method.12,13 An important area of application is on-the-fly dynamics, e.g., in the

Ab Initio Multiple Spawning (AIMS) approach,14,15 the Direct Dynamics variational Multi-

Configurational Gaussian (DD-vMCG) method,16–18 the ab initio Multiple Cloning Multi-

Configurational Ehrenfest (AIMC-MCE) approach,19 and the on-the-fly ab initio (OTF-AI)

semiclassical dynamics method.20 Also, statistical treatments,21 system-bath problems,22 and

quantum-classical hybrid approaches11,23 are naturally amenable to a GWP based treatment.

Yet, in many applications, the accuracy of GWP based propagation is an issue, especially if

the relevant dynamics are high-dimensional and correlated. Therefore, GWP based methods

are often considered disjoint from numerically exact wavepacket propagation schemes.

In order to make Gaussian basis sets suitable for accurate quantum propagation in many

dimensions, the combination of GWPs with hierarchical tensor representations of the wave-

function is a key step. The Gaussian-based Multi-Configuration Time-Dependent Hartree

(G-MCTDH) method22,24,25 was developed in this direction. This method uses super-

positions of Hartree products that can be either of “all-GWP” type or involve hybrid

configurations where GWPs and MCTDH type26–28 particles are combined into a high-

dimensional wavefunctions. The vMCG scheme12,13,16 can be understood as a variant of G-

MCTDH, which uses the simplest form of GWP superpositions, in the absence of an MCTDH

type structure of the wavefunction. Within the MCTDH family of methods,26–28 even

more powerful schemes are the recently developed hierarchical multi-layer (ML-MCTDH)

approaches,29–32 which permit accurate wavefunction propagation for hundreds of degrees
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of freedom. Related methods include, e.g., time-dependent density matrix renormalization

group (t-DMRG) approaches.33

In Ref. [34], a two-layer 2L-GMCTDH scheme was proposed which broadens the scope of G-

MCTDH by combining GWPs into flexible first-layer particles. Importantly, the variational

freedom of the wavefunction construction allows the first layer to be orthogonal, even though

the second layer is composed of non-orthogonal GWP functions. While multi-dimensional

FGs are generally taken to be factorizable – and, hence, uncorrelated – these can be combined

into correlated multidimensional first-layer modes. In Ref. [34], a natural continuation to

an arbitrary number of layers was further proposed. Since orthogonality can be imposed for

all layers except for the last, the overall scheme is entirely analogous to the ML-MCTDH

method,29–32 except that the last layer is composed of GWPs, and the mean fields are adapted

to the non-orthogonality of the latter.

While we previously implemented the hierarchical two-layer version of the method (2L-

GMCTDH) and presented applications to vibrational energy redistribution35 and non-

adiabatic dynamics36 for up to 100 modes, the present paper presents the first application

of a more general hierarchical ML-GMCTDH scheme with an arbitrary number of layers.

Non-adiabatic dynamics calculations are carried out for a realistic donor-acceptor system

comprising up to 300 modes. These calculations are benchmarked against highly accurate

ML-MCTDH results. The ML-GMCTDH scheme has been implemented in the QUANTICS

package.37,38

We demonstrate the methodology for a two-state vibronic coupling model representing

charge separation in a fullerene-oligothiophene donor-acceptor (DA) complex. This sys-

tem is a minimal model for the description of exciton dissociation in a paradigm DA system

of organic photovoltaics, composed of poly-3-hexylthiophene (P3HT) and phenyl-C61 bu-

tyric acid methyl ester (PCBM) components.39–41 The P3HT:PCBM bulk heterojunction

material39 exhibits ultrafast charge separation dynamics, on a time scale of ∼50 fs.40,41 In a

previous study42,43 we employed a Linear Vibronic Coupling (LVC) Hamiltonian in conjunc-

tion with the MCTDH method to describe the ultrafast, coherent charge transfer dynamics

in this system. The Hamiltonian was parametrized by electronic structure calculations us-
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ing long-range corrected time-dependent density functional theory (LR-TDDFT) and the

diabatization procedure described in Ref. [42], along with an ab initio generated spectral

density of the phonon modes of the DA complex. In Refs. [44–46], extensions of this model

to multiple electronic states are described.

The present model highlights the pronounced role of vibronic coupling effects in the charge

separation at the DA interface. First, CC stretch type modes play a prominent role due to

their large vibronic couplings (i.e., large Huang-Rhys factors47); these modes typically induce

curve crossing dynamics. Second, a dense frequency distribution is essential, and vibronic

resonance effects48–50 could be involved. Third, an intermolecular mode is included which

modulates the electronic coupling, and leads to a smoothing of the population decay.43 The

resulting dynamics bears vibronically coherent features, as observed experimentally,40,51 but

at the same time shows that an effectively irreversible transfer is taking place.

Since the observed dynamics are strongly correlated, a multiconfigurational treatment is nec-

essary. More approximate methods like Ehrenfest dynamics fail entirely for this system,11

while Multi-Configuration Ehrenfest (MCE) approaches lead to slow convergence for a lim-

ited number of modes (typically for 10-40 modes).11,52 For similar numbers of modes, vMCG

dynamics are difficult to converge, too, while the G-MCTDH approach works well, but be-

comes rapidly expensive.52 Using 2L-GMCTDH, converged calculations could be performed

up to 100 modes.36 Here, we go significantly beyond these previous studies and demonstrate

the application of the ML-GMCTDH approach for up to 300 modes. To obtain a series of

realizations of the linear vibronic coupling Hamiltonian of Ref. [43], the relevant spectral

density was rediscretized, using a variable number of harmonic modes.

The remainder of the manuscript is organized as follows: Sec. II summarizes the wavefunction

ansatz and equations of motion of the ML-GMCTDH method. Sec. III presents the charge

transfer system under study. Sec. IV summarizes the simulation set-up, Sec. V presents the

results obtained for this system, and Sec. VI concludes.
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II. MULTI-LAYER GAUSSIAN-BASED MCTDH (ML-GMCTDH)

METHOD

The multi-layer ML-GMCTDH method can be understood from two perspectives. In Ref.

[34], the approach was introduced as a natural extension of the two-layer 2L-GMCTDH

method34–36 to a larger number of layers. Alternatively, one can think of a modified ML-

MCTDH approach,29–32 where GWPs replace the single-particle functions (SPFs) of the last

layer. Here, we will follow the former approach which highlights the aspect that the non-

orthogonal GWP representation is embedded into a flexible, orthogonal SPF representation.

From both perspectives, the result is a multi-layer method which is identical to ML-MCTDH

except for the last layer, which is composed of GWPs. In the following, we therefore first ad-

dress the 2L-GMCTDH approach, and then present its generalization to the ML-GMCTDH

scheme.

A. Two-Layer G-MCTDH

Here, we address the basic two-layer scheme34 which best illustrates the general multi-layer

concept, motivated by the limitations of the FG-based wavefunction ansatz that is commonly

employed in the G-MCTDH22,24,25 method and its vMCG variant.12,13,16 Multidimensional

FGs are uncorrelated product functions of fixed width and therefore far less suitable to

describe correlated dynamics than typical SPFs within the MCTDH approach.26–28 In order

to re-introduce flexibility and correlations into FG based wavefunctions, it was suggested

in Ref. [34] to create a new type of SPFs defined in terms of superpositions of FGs. This

strategy entails a two-layer representation.

Since we will address coupled electronic states, we describe combined electronic-vibrational

representations of the wavefunction. Specifically, we will employ the so-called single-set

scheme,28,36 where the GWP basis is taken to be state-independent, and the electronic

states are treated as a set of additional electronic SPFs which are here assumed to be time-

independent. While several types of representations – single-set, multi-set, and a hybrid

variant – were implemented in the 2L-GMCTDH framework,36 we focus on the single-set
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variant in the present context since this is the approach chosen in the ML-MCTDH method

(see also the discussion of this aspect below).

In the formal development of this section, we will refer to a diabatic Hamiltonian of the

general form53

Ĥ =
ns∑
s

ns∑
s′

Ĥ(ss′)|s〉〈s′| = T̂ 1̂ +
ns∑
s

ns∑
s′

V̂ (ss′)|s〉〈s′| (1)

where the kinetic energy term is electronically diagonal while electronic couplings appear in

the form of potential type matrix elements (rather than the derivative couplings pertaining

to the adiabatic picture).53 In Sec. III, the specific vibronic coupling Hamiltonian employed

in this paper will be described in detail.

1. Wavefunction ansatz

The general wavefunction ansatz remains the same as in the MCTDH method,28,34

|Ψ(x, t)〉 =
ns∑
s

∑
J

A
(1)
Js (t)ΦJ(x, t)|s〉

=
ns∑
s

∑
J

A
(1)
Js (t)

f∏
κ=1

χ
(κ)
jκ

(xκ, t)|s〉 (2)

with time-dependent coefficients A
(1)
Js (t), time-dependent SPFs χ

(κ)
jκ

(xκ, t), where xκ =

(x1, x2, . . . , xdκ) generally represents a multidimensional (“combined”) mode, and the elec-

tronic states |s〉, s = 1, . . . , ns. The multi-index J = (j1, j2, . . . , jf ) collects all SPF indices

for a given configuration ΦJ ; here, jκ = 1, 2, . . . , n(κ), where n(κ) defines the dimension of

the SPF basis for the κth mode. The coefficients A
(1)
Js are labelled with the superscript index

(1) to indicate that these quantities belong to the first layer of the wavefunction representa-

tion. In the single-set 2L-GMCTDH approach,36 which we focus on here, the SPFs χ
(κ)
jκ

are

state-independent and the electronic degrees of freedom are treated as an independent set of

additional electronic SPFs. The latter are defined as time-independent and identical to the

electronic states |s〉, such that the number of electronic SPFs corresponds to the number ns

of electronic states.
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Differently from MCTDH, the first-layer SPFs χ
(κ)
jκ

of Eq. (2) are now defined as superposi-

tions of GWPs,34–36

χ
(κ)
j (xκ, t) =

∑
L

A
(2,κ)
j,L (t)G

(κ)
L (xκ, t)

=
∑
L

A
(2,κ)
j,L (t)

f (κ)∏
µ=1

g
(κ,µ)
lµ

(xκ,µ, t) (3)

with multi-indices L = (l1, l2, . . . , lfκ), where lµ = 1, 2, . . . , n(κ,µ), second-layer coefficients

A
(2,κ)
j,L (t), and multi-dimensional GWPs g

(κ,µ)
l .

g
(κ,µ)
l (xκ,µ, t) = g

(κ,µ)
l (xκ,µ,Λ

(κ,µ)
l (t))

= exp
[
xTκ,µa

(κ,µ)
l xκ,µ +

(
ξ
(κ,µ)
l (t)

)T
xκ,µ + η

(κ,µ)
l (t)

]
(4)

whose time evolution is defined by the parameter set Λ
(κ,µ)
l (t) =

(
a
(κ,µ)
l , ξ

(κ,µ)
l (t), η

(κ,µ)
l (t)

)
.

Since we focus on FGs, the symmetric width matrix a
(κ,µ)
l is taken to be constant, real-

valued and time-independent. The complex parameters ξ
(κ,µ)
l = −2a

(κ,µ)
l q

(κ,µ)
l + ip

(κ,µ)
l label

a time-evolving phase-space point with center position q
(κ,µ)
l and center momentum p

(κ,µ)
l

in the (κ, µ)th subspace. Finally, the real part of η
(κ,µ)
l fixes the norm of the FG and the

imaginary part of η
(κ,µ)
l is a phase factor. The latter is set to zero in the following, Im(η

(κ,µ)
l )

= 0, such that the phase information is effectively absorbed into the A
(2,κ)
j,L (t) coefficients;

this corresponds to a “coherent state gauge”.54,55 As a result, the following factorized form

of the multi-dimensional FGs is obtained,

g
(κ,µ)
l (xκ,µ, t) =

∏
j

N
(κ,µ)
lj

× exp[(a
(κ,µ)
l )jj(xκ,µ)2j + (ξ

(κ,µ)
l )j(t)(xκ,µ)j] (5)

with the overall normalization constant N
(κ,µ)
l =

∏
j N

(κ,µ)
lj where N

(κ,µ)
lj corresponds to the

normalization for each 1D component GWP wavefunction,

N
(κ,µ)
lj =

(
−2Re(a

(κ,µ)
l )jj
π

)1/4

exp

(
(Re(ξ

(κ,µ)
l )j)

2

4Re(a
(κ,µ)
l )jj

)
(6)

7

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
46

93
3



To summarize, Eq. (2) and Eq. (3) define a generalized, two-layered G-MCTDH ansatz

which has far more flexibility than the G-MCTDH reference method. The first-layer SPFs

χ
(κ)
j represent time-evolving super-particles, defined by the time-evolving A

(2,κ)
j,L coefficients

and a set of GWP modes g
(κ,µ)
l . These now appear in the second layer and are uniquely

specified by the index pair (κ, µ), where µ = 1, 2, . . . , f (κ), labels the GWP subspaces within

the first-layer κth subspace. Within the second-layer subspaces, l = 1, . . . , n(κ,µ) runs over

the basis set of second-layer GWPs g
(κ,µ)
l , such that n(κ,µ) GWPs per subspace contribute

to the product configurations G
(κ)
L of Eq. (3).

Importantly, this wavefunction representation permits the same gauge for the first layer as

in standard MCTDH, i.e., within each κth first-layer subspace, the SPFs can be chosen as

orthonormal at all times,

〈χ(κ)
j (t)|χ(κ)

j′ (t)〉 = δjj′ (7)

Within each κth subspace, a unitary evolution under a constraint operator ĥ
(κ)
c is allowed,28,34

P̂ (κ)(t)(i∂t − ĥ(κ)c )|χ(κ)
j (t)〉 = |0〉 (8)

with the time-dependent projection operator onto the κth subspace,

P̂ (κ)(t) =
∑
j

|χ(κ)
j (t)〉〈χ(κ)

j (t)| (9)

In the following, the constraint operator ĥ
(κ)
c of Eq. (8) is set to zero, without loss of gener-

ality.

The conditions of Eq. (7) are preserved by the dynamics of the coefficients A
(1)
Js and A

(2,κ)
j,L ,

despite the non-orthogonality of the GWP basis appearing in the second layer. Thus the first-

layer SPFs χ
(κ)
j remain orthonormal at all times, while the second-layer GWPs g

(κ,µ)
l remain

normalized but non-orthogonal. An exception is the trivial case where χ
(κ)
j (t) = g

(κ)
j (t) such

that the relevant first-layer SPF reduces to a single GWP and the second layer is absent.

(As a result, the first-layer configurations are then of hybrid SPF/GWP type as in the

G-MCTDH method.22,24,25)
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Finally, the wavefunction Eq. (2) can be expressed as follows in terms of sums over products

of first-layer or second-layer SPFs and single-hole functions (SHFs),

|Ψ〉 =
∑
j

χ
(κ)
j |ψ

(κ)
j 〉 =

∑
l

g
(κ,µ)
l |ψ(κ,µ)

l 〉 (10)

where |ψ(κ)
j 〉 and |ψ(κ,µ)

l 〉 refer to first-layer and second-layer SHFs, respectively,

|ψ(κ)
j 〉 =

∑
s

∑
J(κ)

A
(1)

J(κ:j)s
ΦJ(κ) |s〉,

|ψ(κ,µ)
l 〉 =

∑
j

[∑
L(µ)

A
(2,κ)

j,L(µ:l)G
(κ)

L(µ)

]
|ψ(κ)
j 〉 (11)

whose overlap defines the first-layer and second-layer single-particle density matrices, ρ
(κ)
jj′ =

〈ψ(κ)
j′ |ψ

(κ)
j 〉 and ρ

(κ,µ)
ll′ = 〈ψ(κ,µ)

l′ |ψ(κ,µ)
l 〉. In Eq. (11), we again used a shorthand notation for

multi-indices, i.e., J (κ) = (j1, . . . , jκ−1, jκ+1, . . . , jf ) and J (κ:j) = (j1, . . . , jκ−1, j, jκ+1, . . . , jf ).

Further, single-hole configurations are defined as ΦJ(κ) =
∏

κ′ 6=κ χ
(κ′)
jκ′

. The second-layer

quantities L(µ) , L(µ:l) and G
(κ)

L(µ) are defined analogously.

2. Equations of motion

In the variational equations of motion (EOMs), obtained from the Dirac-Frenkel variational

principle,28,56 the electronic state index appears explicitly in the EOMs for the first-layer

coefficients A(1),

iȦ
(1)

s =
∑
s′

H(ss′)A
(1)
s′ (12)

where the A(1) vector has elements A
(1)
Js ≡ (A(1)

s )J and the Hamiltonian matrix elements in

the basis of first-layer configurations read

H
(ss′)
JJ ′ = 〈ΦJ |Ĥ(ss′)|ΦJ ′〉 (13)

Conversely, the equations for the second-layer coefficients A(2) do not carry an electronic

state index within the single-set scheme,

iS(κ)Ȧ
(2,κ)

=
[
H(κ) − i τ (κ)

]
A(2,κ) (14)

9
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In Eq. (14), all quantities are defined by analogy with the G-MCTDH method24 including

the overlap matrix S(κ), the differential overlap matrix τ (κ), and the effective mean-field

Hamiltonian H(κ) matrix,

S
(κ)
jL,j′L′ = δjj′〈G(κ)

L |G
(κ)
L′ 〉 , τ

(κ)
jL,j′L′ = δjj′〈G(κ)

L |∂tG
(κ)
L′ 〉

(15)

H
(κ)
jL,j′L′ =

〈
G

(κ)
L

∣∣∣(1− P̂ (κ))
[(
ρ(κ)

)−1
Ĥ

(κ)
]
jj′

∣∣∣G(κ)
L′

〉
(16)

Summations over the electronic states appear indirectly in the definitions of the single-

particle density ρ
(κ)
jj′ = 〈ψ(κ)

j′ |ψ
(κ)
j 〉, using Eq. (11), and the mean-field Hamiltonian of Eq.

(16),

Ĥ
(κ)
ll′ =

∑
s

∑
s′

〈ψ(κ)
l |Ĥ

(ss′)|ψ(κ)
l′ 〉 (17)

Finally, the EOMs for the GWP parameters Λ(κ,µ) also have the same structure as in G-

MCTDH,24 except that these equations now appear in the second layer,

iC(κ,µ)Λ̇
(κ,µ)

= Y (κ,µ) (18)

In Eq. (18), the C matrix and Y vector are defined as

C
(κ,µ)
lα,l′β = ρ

(κ,µ)
ll′

〈
∂αg

(κ,µ)
l

∣∣∣(1− P̂ (κ,µ))
∣∣∣∂βg(κ,µ)l′

〉
(19)

Y
(κ,µ)
lα =

∑
l′

〈
∂αg

(κ,µ)
l

∣∣∣(1− P̂ (κ,µ))Ĥ
(κ,µ)
ll′

∣∣∣g(κ,µ)l′

〉
(20)

where we used the shorthand notation ∂αg
(κ,µ)
l = (∂g

(κ,µ)
l /∂Λ

(κ,µ)
l,α ), and where the second-

layer mean-field Hamiltonian matrix elements are given as

Ĥ
(κ,µ)
ll′ =

∑
s

∑
s′

〈ψ(κ,µ)
l |Ĥ(ss′)|ψ(κ,µ)

l′ 〉 (21)

To summarize, the EOMs of the 2L-GMCTDH method combine (i) a single-set MCTDH-

like equation for the first-layer coefficients A(1) (Eq. (12)), (ii) a G-MCTDH-like equation
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for the second-layer coefficients A(2) (Eq. (14)), and (iii) a G-MCTDH like equation for the

GWP parameters Λ(κ,µ) (Eq. (18)). This scheme is superior to G-MCTDH because the GWP

parameter evolution is now restricted to low-dimensional (κ, µ) subspaces; this alleviates the

unfavorable, cubic scaling ∼ (n(κ,µ)dκ,µ)3 of FG propagation as a function of the number of

combined degrees of freedom dκ,µ and the number n(κ,µ) of GWPs in the (κ, µ)th subspace.

These equations are discussed in more detail in Refs. [34–36].

B. Multi-Layer GMCTDH

The generalization of the above ansatz to more than two layers is conceptually straightfor-

ward: The upper, orthogonal layer of the 2L-GMCTDH wavefunction can be expanded into

multiple layers – as in the ML-MCTDH method29–32 – while the last layer remains of GWP

type. This formal development has been carried out in Ref. [34] and is recapitulated in the

following.

As mentioned above, the single-set approach28,36 is employed, which is the standard approach

within the ML-MCTDH scheme.32 While the single-set scheme may offer less flexibility than

multi-set or hybrid schemes,36 it is more straightforward to implement in a general multi-

layer context, and convergence is ensured by the flexibility of the hierarchical wavefunction

form.

1. Wavefunction ansatz

As in Sec. II A, we start with the wave function |Ψ〉 in single-set form,

|Ψ(t)〉 =
ns∑
s

∑
J

A
(1)
Js (t)Φ

(1)
J (t)|s〉

=
ns∑
s

∑
J

A
(1)
Js (t)

f (1)∏
κ1=1

χ
(1,κ1)
jκ1

(t)|s〉 (22)

where the notation is entirely analogous to Eq. (2), except that the configurations and

SPFs are labeled with a superscript index (1) to underscore that these belong to the first
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layer of the wavefunction. Now the first-layer SPFs {χ(1,κ1)
jκ1
} are expanded into second-

layer orthogonal configurations, and likewise for successive layers. However, the last layer is

represented by non-orthogonal GWPs as in the 2L-GMCTDH scheme.

For an M -layer ansatz, the SPFs of the first (M − 1) layers are expanded as follows,

χ
(m,νm)
j (t) =

∑
J

A
(m+1,νm)
j,J (t)Φ

(m+1,νm)
J (t)

=
∑
J

A
(m+1,νm)
j,J (t)

f
(m+1)
νm∏

κm+1=1

χ
(m+1,νm+1)
jκm+1

(t)

(23)

where m = 1, 2, . . . ,M −1 and multi-indices are employed as above. Further, we introduced

the shorthand notation νm = (κ1, κ2, . . . , κm) in order to label a particular mth-layer mode.

(If m = 1, we obtain ν1 = κ1, consistent with Eq. (22).) That is, for a given mth-layer

mode, νm uniquely defines the full position in the wavefunction expansion, while the active

index in the mth layer is κm = 1, 2, . . . , f
(m)
νm−1 . Finally, the SPFs of the final (Mth) layer are

FG functions, that is

Φ
(M,νM−1)
J (t) ≡ G

(M,νM−1)
J (t) =

f
(M)
νM∏

κM=1

g
(M,νM )
j (Λ

(M,νM )
j (t))

(24)

that is, χ
(M,νM )
j (t) = g

(M,νM )
j (Λ

(M,νM )
j (t)).

As in the 2L-GMCTDH case, the representations of Eq. (22) and Eq. (23) are not unique,

and we will use the standard gauge conventions throughout:

(i) For the first M−1 layers, the initial SPFs χ(m,νm)(0) are chosen mutually orthonormal

and their time evolution inside the νmth subspaces is fixed by the condition (see Eq.

(8))

P̂ (m,νm)
(
i∂t − ĥ(m,νm)

c )|χ(m,νm)
j 〉 = |0〉 , (25)

where P̂ (m,νm) is the orthogonal projector on the νmth subspace,

P̂ (m,νm) =
∑
j

|χ(m,νm)
j 〉〈χ(m,νm)

j | (26)
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The constraint operator ĥ
(m,νm)
c is an arbitrary Hermitian operator which guarantees

that the SPFs stay orthonormal for all times:〈
χ
(m,νm)
j (t)

∣∣∣χ(m,νm)
j′ (t)

〉
= δjj′ . (27)

In the following, we will again set ĥ
(m,νm)
c = 0 as the simplest possible choice.

(ii) The GWPs g
(M,νM )
j (Λ

(M,νM )
j (t)) that replace the conventional SPFs in the Mth layer

are chosen normalized, and their free phase factors are set to zero, Im(η
(M,νM )
j )(t) = 0.

The GWPs remain normalized but non-orthogonal throughout the propagation.

As above, it is convenient to define the mth-layer single hole functions ψ
(m,νm)
j ,

|Ψ〉 =
∑
j

χ
(m,νm)
j |ψ(m,νm)

j 〉 , (28)

and using these, the SHF overlaps that define the mth-layer density matrices,

ρ
(m,νm)
jj′ =

〈
ψ

(m,νm)
j′

∣∣∣ψ(m,νm)
j

〉
, (29)

and the mth-layer mean field Hamiltonian operators,

Ĥ
(m,νm)
jj′ =

〈
ψ

(m,νm)
j

∣∣∣Ĥ∣∣∣ψ(m,νm)
j′

〉
, (30)

In the Mth layer, the overlap of GWP configurations is given as follows,

S
(M,νM−1)
JJ ′ =

〈
G

(M,νM−1)
J

∣∣∣G(M,νM−1)
J ′

〉
, (31)

and the corresponding differential overlaps read

τ
(M,νM−1)
JJ ′ =

〈
G

(M,νM−1)
J

∣∣∣∂tG(M,νM−1)
J ′

〉
. (32)

As a note on the above presentation, we assumed that all first-layer particles are subsequently

expanded into M layers. However, as will be illustrated below, a general ML-GMCTDH

wavefunction can contain branches with variable numbers M of layers, analogously to the

general ML-MCTDH construction scheme.29–32 This includes the trivial case M = 1 for

selected branches where GWP particles are found in the first layer, χ
(1,κ)
j = g

(1,κ)
j .
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2. Equations of motion

Using the Dirac-Frenkel variational principle,28,56 EOMs are now obtained for the coefficients

of all layers, along with the GWP parameters of the last layer. To start with, the equation

for the first-layer coefficients reads as Eq. (12),

iȦ
(1)

s =
∑
s′

H(1,ss′)A
(1)
s′ (33)

where (A(1)
s )J = A

(1)
Js , and the Hamiltonian in the basis of first-layer configurations is given

as

H
(1,ss′)
J,J ′ = 〈Φ(1)

J |Ĥ
(1,ss′)|Φ(1)

J ′ 〉 (34)

Within the single-set scheme as defined in the ansatz Eq. (22), the electronic state indices

exclusively appear in the first layer.

For the coefficients of the next M − 2 layers we obtain the same equations of motion as in

standard multi-layer MCTDH,30–32,57 i.e. for m = 2, . . . ,M − 1

iȦ
(m,νm−1)

= H(m,νm−1)A(m,νm−1) (35)

with

H
(m,νm−1)
jJ,j′J ′ =

〈
Φ

(m,νm−1)
J

∣∣∣∣(1− P̂ (m−1,νm−1)
)

×
[
(ρ(m−1,νm−1))−1Ĥ

(m−1,νm−1)]
jj′

∣∣∣∣Φ(m,νm−1)
J ′

〉
(36)

where Ĥ
(m−1,νm−1)

is the mean-field Hamiltonian operator pertaining to the (m−1)st layer,

see Eq. (30).

In the final (Mth) layer, the equations of motion for the coefficients are the same as in the

second layer of the 2L-GMCTDH variant, Eq. (14),

iS(M,νM−1)Ȧ
(M,νM−1)

=
[
H(M,νM−1) − τ (M,νM−1)

]
A(M,νM−1) (37)
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with the Mth-layer effective mean-field Hamiltonian matrix

H
(M,νM−1)
jJ,j′J ′ =

〈
G

(M,νM−1)
J

∣∣∣∣(1− P̂ (M−1,νM−1)
)

×
[
(ρ(M−1,νM−1))−1Ĥ

(M−1,νM−1)
]
jj′

∣∣∣∣G(M,νM−1)
J ′

〉
,

(38)

and the differential overlap

τ
(M,νM−1)
jJ,j′J ′ = δjj′τ

(M,νM−1)
JJ ′ . (39)

Finally, the equations of motion for the Gaussian parameters are again entirely analogous

to those of G-MCTDH and 2L-GMCTDH, cf. Eq. (18),

iC(M,νM )Λ̇
(M,νM )

= Y (M,νM ) (40)

with

C
(M,νM )
jα,j′β = ρ

(M,νM )
jj′

〈
∂αg

(M,νM )
j

∣∣∣(1− P̂ (M,νM )
)∣∣∣∂βg(M,νM )

j′

〉
,

Y
(M,νM )
jα =

∑
j′

〈
∂αg

(M,νM )
j

∣∣∣(1− P̂ (M,νM )
)
Ĥ

(M,νM )
jj′

∣∣∣g(M,νM )
j′

〉
and the shorthand notation ∂αg

(M,νM )
j = (∂g

(M,νM )
j /∂Λ

(M,νM )
j,α ).

To summarize, the above ML-GMCTDH scheme expands the first, orthogonal layer of the

2L-GMCTDH approach into a hierarchical multi-layer representation, while the last layer

is again of GWP type. In practice, the above scheme is a modified ML-MCTDH approach,

where the last layer is represented by non-orthogonal GWP particles rather than conven-

tional SPFs. The above equations have been derived in Ref. [34] in a slightly more general

form, for arbitrary constraint operators, ĥ
(m,νm)
c .

III. CHARGE TRANSFER HAMILTONIAN AND SPECTRAL DENSITY

In the present study, we use the ML-GMCTDH scheme to carry out non-adiabatic dynamics

calculations for a two-state LVC Hamiltonian53 describing charge separation in a fullerene-

oligothiophene (C60-OT4) complex,43 as illustrated in Fig. 1a). (Here, OT4 stands for an
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oligomer with four thiophene monomer units.) As mentioned in Sec. I, this system represents

a minimal model for charge transfer in a P3HT:PCBM donor-acceptor blend.39–41,51,58–60

The P3HT:PCBM material in a so-called bulk heterojunction architecture39 is a paradigm

system in organic photovoltaics applications, exhibiting ultrafast exciton dissociation.40,51

Even though the present model is a minimal realization, it is able to capture the prominent

role of vibronic couplings in the charge separation dynamics. The model in the present form

is a building block for more general aggregate Hamiltonians describing the P3HT:PCBM

material.44–46

The model Hamiltonian as specified below is constructed from supermolecular LR-TDDFT

calculations using a suitable diabatization procedure as reported in Ref. [42]. The Hamil-

tonian includes intramolecular modes of the C60 and OT4 fragments ({xi}) in terms of a

spectral density J(ω), along with an explicit representation of the C60-OT4 intermolecu-

lar distance mode (R). In particular, it turns out that the R mode exerts a non-negligible

influence on the electronic coupling between the two fragments, within the diabatic represen-

tation. The determination of vibronic couplings from electronic structure information using

the relative displacement of excited-state equilibrium geometries (or alternatively, Franck-

Condon gradients), can be found in Refs. [43–45] and is briefly recapitulated in the following

subsection.

TABLE I. Parameters, quoted in eV, for the ĤS and ĤR portions of the Hamiltonian, see Eqs.

(42)-(43).

∆XT−CT γ γR κR ωR

0.079 0.130 −0.010 0.030 0.010
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A. Vibronic coupling Hamiltonian

Within a generalized system-bath type set-up, the Hamiltonian for the oligothiophene-

fullerene complex under study takes the form

Ĥ = ĤS + ĤR + ĤB (41)

where ĤS refers to the electronic part, ĤR is the part of the Hamiltonian that depends on

the inter-fragment (R) coordinate, and ĤB corresponds to the “bath” Hamiltonian subsum-

ing the intramolecular modes. Accounting for a two-dimensional electronic Hilbert space

spanned by a photogenerated exciton state |XT〉 localized on the oligothiophene moiety,

and a charge transfer state |CT〉, the ĤS part reads as follows,

ĤS = ∆XT−CT|CT〉〈CT|+ γ
(
|XT〉〈CT|+ |CT〉〈XT|

)
(42)

where the XT-CT gap ∆XT−CT and the electronic coupling γ are of the order of 0.1 eV (see

Table I). Next, the part of the Hamiltonian relating to the inter-fragment mode, ĤR, is

given as

ĤR =
ωR
2

(R̂2 + P̂ 2) + κRR̂ |CT〉〈CT|

+ γRR̂
(
|XT〉〈CT|+ |CT〉〈XT|

)
(43)

where κR and γR are electronically diagonal and off-diagonal vibronic couplings. Mass and

frequency weighted coordinates are used throughout.

Finally, the bath Hamiltonian takes the standard form, for Nbath = (N − 1) modes (where

the total number N includes the R̂ mode),

ĤB =

Nbath∑
i=1

ωi
2

(x̂2i + p̂2i ) +

Nbath∑
i=1

κix̂i |CT〉〈CT| (44)

noting that the vibronic couplings {κi} relate to displacements {∆xeqi = κi/ωi} of the CT

state equilibrium geometry relative to the equilibrium geometry of the XT state, which is
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FIG. 1. (a) Schematic representation of a fullerene-oligothiophene (C60-OT4) complex representa-

tive of a P3HT:PCBM interface. Here, the elementary building blocks are molecular units or else

coarse-grained “super-particles” as indicated by the black frames. The inter-fragment coordinate

R̂ entering the model is explicitly shown. (b) Sketch of the Hamiltonian model for the fullerene-

oligothiophene complex according to Eqs. (41)-(44). (c) Vibronic couplings κ [eV] for a discretized

distribution of intramolecular modes of the oligothiophene-fullerene complex described in Ref. [

43]. Vibronic couplings are shown for three discretized realizations, for Nbath=99, Nbath=199, and

Nbath=299.

taken as reference. (In further detail, it is assumed in the present, simplified model that the

Franck-Condon geometry coincides with the XT state equilibrium geometry.42,43) A sketch

of the model Hamiltonian is shown in Fig. 1b).

B. Spectral density

A discretized spectral density was initially constructed for a C60-OT4 supermolecular

complex.42 To this end, the normal modes (i.e., N0= 246 modes) of the charge-separated CT

state were referred to, and the displacements ∆xeqi between the XT vs. CT state minima

18
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along the individual modes were computed. The vibronic couplings {κi} and mode frequen-

cies {ωi} define a discretized spectral density which was subsequently convoluted with a

Lorentzian broadening function,

J(ω) =
π

2

N0∑
i=1

κ2i δ(ω − ωi)

' π

2

N0∑
i=1

κ2i
π

∆

(ω − ωi)2 + ∆2
(45)

where the parameter ∆ determines the Lorentzian width. In the calculations reported below,

∆ = 0.25 ∆0 is used, where ∆0 corresponds to the root mean square (RMS) of the frequency

spacings of the original data set. (See Ref. [43] for a detailed discussion of the effect of

the ∆ parameter.) The resulting continuous SD shows large amplitudes around 0.2 eV (∼

1600 cm−1), due to the characteristic C=C and C=S stretching modes of the C−60 and OT+
4

fragments. Also, the lower-frequency range below 0.1 eV (∼ 800 cm−1) features pronounced

contributions, mainly due to OT+
4 in-plane bending modes and the radial fullerene Hg modes.

In view of carrying out quantum dynamical calculations for a variable number of bath modes,

the continuous spectral density is re-discretized for an arbitrary number of Nbath bath modes,

J(ω) =
π

2

Nbath∑
i=1

κ2i δ(ω − ωi) (46)

where the vibronic couplings are obtained as follows from the reference spectral density J(ω)

of Eq. (45), given an equidistant sampling interval ∆ω,61

κi =

(
2

π
J(ωi)∆ω

)1/2

(47)

The sampling interval determines the Poincaré recurrence period τp = 2π/∆ω. In the follow-

ing, we will consider several realizations of the spectral density, corresponding to Nbath = 99,

Nbath = 199, and Nbath = 299, featuring Poincaré times equal to 1135 fs, 2249 fs, and 3380 fs,

respectively. The relevant sets of vibronic couplings are illustrated in Fig. 1c). The different

numbers of bath modes allows us to study the effect of the system size on the performance

of the ML-GMCTDH simulations reported below.

19

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
46

93
3



FIG. 2. Multi-layer tree structures featuring six layers (6L) vs. five layers (5L) employed for the

300-mode system. Circles represent nodes, whereas numbers next to lines connecting two nodes

indicate the number of associated SPFs. Numbers placed inside a circle indicate that several

identical replicas of the relevant sub-branch exist. If the equivalent sub-branches differ in the

numbers of SPFs, we report the minimum and maximum numbers of SPFs used for the equivalent

branches separated by a hyphen. As the tree is structured in a symmetrical fashion, equivalent

sub-branches are highlighted in colored rectangles and are repeated as smaller colored boxes. The

numbers indicated inside the ellipses give the number of combined modes. The electronic sub-

branch is denoted “el”. The isolated branch on the r.h.s., with a single layer, relates to the

intermolecular R̂ coordinate.

IV. ML-GMCTDH SIMULATION SET-UP AND PERFORMANCE

In the following, we discuss results obtained with a new ML-GMCTDH implementation

contained in the QUANTICS package.37 This implementation is more general than the
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TABLE II. Performance parameters for 100, 200, and 300-modes propagation schemes. The cal-

culations were carried out on a 2.6 GHz Intel Xeon E5-2690v4 node (single-thread) with 256 GB

memory.

Number of Multi-layer CPU Number of RAM

modes tree scheme Method time [s] coefficients [MB]

100 6L ML-GMCTDH 2 223 46 501 39

100 6L ML-MCTDH 1 695 46 501 16

100 5L ML-GMCTDH 1 131 38 776 37

100 5L ML-MCTDH 7 999 38 776 200

200 6L ML-GMCTDH 50 299 604 390 242

200 6L ML-MCTDH 43 686 604 390 142

200 5L ML-GMCTDH 26 858 588 440 240

200 5L ML-MCTDH 46 243 588 440 530

300 6L ML-GMCTDH 102 969 1 141 294 327

300 6L ML-MCTDH 111 897 1 141 294 269

300 5L ML-GMCTDH 57 891 1 117 119 324

300 5L ML-MCTDH 86 148 1 117 119 856

previously available 2L-GMCTDH in-house code.35,36 The present implementation is entirely

analogous to the ML-MCTDH code of the QUANTICS package (which is, in turn, analogous

to the ML-MCTDH implementation of the Heidelberg MCTDH package62). Within this

scheme, the last layer of the ML-MCTDH wavefunction branches has been replaced by

GWPs as discussed above. Due to the LVC form of the potential and the normal-mode

form of the kinetic energy, all matrix elements can be evaluated analytically and exactly as

Gaussian moments. More generally, a local harmonic approximation (LHA) is employed for

the potential matrix elements.16,24,35
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In the integration scheme, regularization of the single-particle density matrices ρ, which is

mainly required due to initially unoccupied SPFs in the first M − 1 layers, is carried out

analogously to ML-MCTDH. Furthermore, the S and C matrices appearing in the last layer

may incur numerical instabilities due to linear dependencies of the GWPs. For the ρ and S

matrices, a standard regularization procedure is applied in line with previous applications of

MCTDH, G-MCTDH, and vMCG, such that the eigenvalues below a pre-defined threshold

value ε are adjusted as ωreg = ω + ε exp(−ω/ε)16,28,35 (where the regularization parameter

typically takes the value ε = 10−8). For the C matrix, a so-called dynamic coupling scheme16

is employed, by which the GWPs which give rise to linear dependencies are decoupled and

evolve classically. Finally, the GWPs are renormalized at each step. In ML-GMCTDH, the

linear dependency problem is generally alleviated due to the partitioning into subspaces; in

the present applications, no significant numerical instabilities were noticeable.

Similarly to Ref. [36], initial conditions are constructed with a single occupied FG particle

per subspace in the initial XT state. The unoccupied GWPs are defined by equidistant

shifts in coordinate space for all modes; these coordinate shifts are defined such as to match

a pre-defined GWP overlap (here, Sjl = 0.7). In the present simulations, all GWPs share

the same coherent-state width.

As explained above, we consider three rediscretizations of the spectral density shown in Fig.

1, namely Nbath = 99 (N = 100), Nbath = 199 (N = 200), and Nbath = 299 (N = 300).

Reference calculations are carried out using the ML-MCTDH algorithm as implemented

in the QUANTICS package, using the same multi-layer trees. In order to speed up the

calculations, the Constant Mean Field (CMF) integrator is used; within this set-up, the

Short Iterative Lanczos (SIL) algorithm is used for the top layer, and the fifth-order Runge-

Kutta (RK5) algorithm is used for the lower layers. Results match with those obtained via

the Variable Mean Field (VMF) integrator, up to deviations of time-dependent populations

of the order of 10−2 (see Sec. S4 of the Supp. Mat.).

The multi-layer tree employed for the 300-mode calculations is shown in Figure 2; analogous

multi-layer trees are illustrated in Sec. S1 of the Supp. Mat., for N = 100 and N = 200.

The details of the mode combination scheme are described in Sec. S5 of the Supp. Mat. In
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general, a balanced multi-layer tree will lead to a favorable distribution of the numerical

effort between the computation of the mth-layer mean fields (along with the related effort

of the solution to the coefficient equations), and the effort of GWP propagation. For the

2L-GMCTDH case, explicit expressions for the numerical effort were derived.34–36 While the

constraints of the 2L-GMCTDH scheme led us to construct comparatively high-dimensional

GWP subspaces in the 100-mode calculations for the same system that is studied here,36

the possibility to move to more than two layers now permits much lower-dimensional GWP

spaces in the last layer, specifically comprising no more than one to three modes for M = 5

or M = 6 as detailed below.

As illustrated in Figure 2 for N = 300, two variants of the multi-layer trees are employed: i.e.,

a six-layer (6L) variant and a five-layer (5L) variant. In the 6L case, the GWP parameter

propagation has been reduced to one-dimensional subspaces, whereas in the 5L case, the

GWPs are two-dimensional and sometimes three-dimensional. In both cases, the inter-

molecular R mode, which is diagonally and off-diagonally correlated with the electronic

subspace, is treated separately in terms of an isolated branch with a single layer of GWP

type. Recalling that the propagation cost in the GWP subspaces is proportional to (nd)3

where n is the number of GWPs in the κth subspace and d is the number of modes combined

into a given FG mode (see Sec. II A 2), d = 2 or d = 3 in conjunction with n = 5 remain

favorable, such that the 5L variant is overall preferable for large N since the number of

mean-field computations is reduced.

As can be seen from the numbers of SPFs and GWPs indicated in the multi-layer trees

(typically between 5 and 15, see the numbers next to the edges of the graphs in Fig. 2),

the dynamics are comparatively strongly correlated, even though less correlated than in the

case of dynamics at conical intersections.32 The overall number of wavefunction coefficients

are around 4.7×104 (6L) and 3.9×104 (5L) in the 100-mode calculations, 6.0×105 (6L) and

5.9×105 (5L) in the 200-mode calculations, and around 1.1×106 in the 300-mode calculations

(6L and 5L), see Table II. For all calculations, both ML-GMCTDH and ML-MCTDH, the

maximum of the least populated natural orbital population remains below 1% (see Sec. 7 of

the Supp. Mat.).
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FIG. 3. Results obtained for ML-GMCTDH calculations for N=300 modes, where N=Nbath+1.

The black lines correspond to ML-MCTDH reference calculations, while colored lines show ML-

GMCTDH results, here obtained with the 6L scheme. a) Diabatic populations of the XT and CT

states, b) real and imaginary parts of the electronic coherence, i.e., ReρXT,CT and ImρXT,CT, c)

Adiabatic populations of the states S1 and S2, obtained by an approximate diabatic-to-adiabatic

transformation. d) Likewise, real and imaginary parts of the adiabatic coherence, i.e., ReρS1,S2

and ImρS1,S2 .

Table II further illustrates the numerical performance of the calculations as compared with

reference ML-MCTDH calculations with the same ML tree structure (see Sec. S1 of the

Supp. Mat. for further details). Briefly, in the reference calculations, the last-layer GWPs

are replaced by conventional SPFs represented in a harmonic-oscillator discrete variable

representation (HO-DVR), using 30 DVR points for each bath mode and 70 DVR points for

the R mode. In terms of CPU time, ML-GMCTDH calculations of 5L type always perform

more favorably than their ML-MCTDH counterparts, and 6L type calculations become more

favorable than ML-MCTDH as the system dimensionality increases to N = 300. Among the

ML-GMCTDH set-ups, 5L calculations are generally faster than 6L calculations by a factor

of two. This trend differs from the corresponding ML-MCTDH calculations, where the 6L

scheme is actually faster than the 5L scheme by a factor of more than four for N = 100, while

the performance of the 5L scheme becomes superior for N = 300. Finally, the 5L scheme is
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also more advantageous over ML-MCTDH as far as memory requirements go, at least by a

factor of two (while the 6L scheme seems to demand more memory than the corresponding

ML-MCTDH calculations). Overall, mode combination is favorable in the last layer, but the

multi-layer construction permits to avoid combining too many modes. By comparison, up

to 8-dimensional FGs were constructed in our previous 2L-GMCTDH calculations for the

same system,36 which were less efficient than the present ML-GMCTDH calculations.

V. ML-GMCTDH SIMULATION RESULTS

The present system has been chosen as an example of an ultrafast, coherent charge transfer

process mediated by vibronic effects. From the perspective of Marcus theory, the system

belongs to the inverted regime and features near-activationless charge separation. Yet, the

ultrafast nature of the charge separation – observed as ∼ 50 fs experimentally40,51 – cannot

be rationalized by conventional rate theories. The present treatment explains the observed

time scale and also highlights the role of several types of vibrational modes, notably the high-

frequency C=C (and C=S) stretch modes mentioned above, as well as the lower-frequency

modes and the inter-fragment mode.

Since electronic and vibronic coherent effects play a prominent role in the dynamics described

below, we computed time-evolving electronic coherences, i.e., off-diagonal elements of the

electronic density matrix,

ρXT,CT(t) = Tr
{
|CT〉〈XT|ρ̂(t)

}
(48)

where the trace (Tr) is taken over the electronic and phonon degrees of freedom of the density

operator, ρ̂(t) = |Ψ(t)〉〈Ψ(t)|.

Figure 3 illustrates the charge separation dynamics in terms of diabatic and adiabatic state

populations, along with the corresponding electronic coherences. Here, the adiabatic state

populations and coherences were obtained by a simplified diabatic-to-adiabatic transforma-

tion along the paths defined by the full set of time-evolving coordinate expectation values

(see Sec. S9 of the Supp. Mat.). The figure shows both ML-GMCTDH simulation results

25

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
46

93
3



FIG. 4. Bath mode displacements (in atomic units) as a function of time and vibrational frequency.

Results obtained at ML-GMCTDH level for 299 bath modes and adopting scheme 6L shown in Fig.

2. For clarity, in the left panel, we report the vibronic couplings κi pertaining to the 299-mode bath

spectral density shown in Fig. 1c, together with the equilibrium displacements ∆xeqi = (κi/ωi).

The time evolution of the intermolecular coordinate R is shown in the bottom panel.

(using the 6L scheme) and ML-MCTDH reference calculations, and indicates no discernable

difference between these simulations (see also the more detailed discussion below).

As detailed in Ref. [36 and 43], the dynamics can be considered to be driven by the

electronic coherence, in a two-step process: First, the wave packet shows Rabi-type os-

cillations between the two diabatic states, given that the electronic coupling γ and offset

∆XT−CT are both of the order of 0.1 eV. In the process, a transient state-to-state popula-

tion flux sets in, which is governed by the imaginary part ImρXT,CT through the expression

ΓXT,CT = (−2γ/~)ImρXT,CT
63,64 where γ is the diabatic coupling (neglecting for simplicity

the R-dependency of the coupling), see also Sec. S10 of the Supp. Mat. This flux goes to
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zero after about 50 fs, when the major part of the XT→ CT transfer has happened (panels

a) and b)). Second, the system relaxes to a quasi-stationary coherent superposition state as

shown by the real part ReρXT,CT which converges towards a constant value after the initial

transient phase. This quasi-stationary state is essentially of CT character, with a small

(∼10%) excitonic component.43

From the complementary adiabatic picture (panels c) and d)), we equally infer that the

initial non-adiabatic event exhibits coherent character during several tens of femtoseconds

and results in a pure S1 state, which is predominantly of charge transfer type but carries

partial excitonic character. Note that the initial XT state corresponds to a superposition of

the adiabatic S1 and S2 states, such that electronic and vibronic dynamics are intertwined

during the first tens of femtoseconds. The computed ultrafast charge transfer dynamics,

with an S2 decay time < 50 fs, is in excellent agreement with the experimentally observed

ultrafast exciton dissociation at P3HT:PCBM interfaces.40,51

To better understand why an extremely fast and apparently irreversible charge separation

event takes place, it is essential to consider the role of vibronic coupling. In Fig. 4, the full

set of vibrational displacements {〈∆xi〉(t)} is shown as a function of time and vibrational

frequency for Nbath=299. Similar results are obtained for the lower-dimensional rediscretiza-

tions of the bath spectral density, as shown in Sec. S3 of the Supp. Mat., including long-time

simulations up to the Poincaré recurrence time. Due to the structure of the spectral density,

collective oscillatory motions of groups of bath modes with similar frequency appear. These

oscillations are found to persist beyond the time scale of the initial non-adiabatic transition

(∼ 50 fs), as also observed experimentally.40,51 The amplitudes of the displacements reflect

the shift in the equilibrium positions ∆xeqi = (κi/ωi) (see left panel) of the individual modes

in the CT state as compared with the XT reference state.

Given that the adiabatic energy gap (∆S2-S1 = 0.27 eV) at the reference geometry, ∆xi = 0,

is significantly larger than the diabatic gap (∆XT-CT = 0.079 eV, see Table I), the high-

frequency bath modes – with frequencies around 0.19 eV – are expected to play an important

role in the initial nonadiabatic transition. Further, a dense distribution of frequencies is

essential to observe an irreversible decay.
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FIG. 5. Results obtained for ML-GMCTDH calculations for Nbath=299 modes, using scheme

6L (panels a) and b)) and scheme 5L (panels c) and d)). As in Fig. 3, ML-MCTDH reference

calculations are shown as black lines. (Left panels) Time-evolution of the populations of the

exciton (XT) state and of the charge transfer (CT) state. (Right panels) Real and imaginary parts

of the electronic coherence ρXT,CT as a function of time. The upper parts of each panel show the

deviations from the ML-MCTDH reference calculations (∆ population, ∆ coherence) on a much

larger scale.

Figure 4 also shows the time evolution of the inter-fragment coordinate R (lower panel),

which is found to move towards smaller values, indicating a contraction of the intermolecular

distance due to the charge separation process. As discussed in further detail in Ref. [43] and

Sec. S8 of the Supp. Mat., this leads to a significant change of both the diabatic energy gap

and the diabatic coupling via the off-diagonal vibronic coupling γR (see Eq. (43)), entailing

a reduction of the coherent motions beyond the initial transients.

To conclude the present discussion, Fig. 5 compares 300-mode calculation results obtained

with the 5L vs. 6L schemes, and the corresponding ML-MCTDH reference calculations. As

already mentioned above, all calculations show excellent agreement, such that differences
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of time-evolving populations and coherences only become discernable on a scale of 10−3, as

shown in the figure.

VI. CONCLUSIONS AND PERSPECTIVE

The present study shows that variational moving Gaussian wavepackets can be conveniently

and efficiently embedded into a hierarchical tensor representation of ML-MCTDH type. The

resulting ML-GMCTDH approach has been implemented in the QUANTICS package,37 by

adapting the last layer of the existing ML-MCTDH scheme to a non-orthogonal GWP repre-

sentation. It should be noted that ML-GMCTDH retains all the properties of Gaussian bases

that have ben used in the G-MCTDH and vMCG methods. Specifically, matrix elements

can be calculated in terms of Gaussian moments, e.g., via local harmonic approximation, by

Shepard interpolation, etc. In the present study the form of the potential allows the matrix

elements to be calculated exactly analytically.

The QUANTICS implementation represents a generalization of the 2L-GMCTDH (M = 2)

variant, which was previously employed to obtain converged propagation results for a 100-

mode realization of the same charge transfer system.36 In the present work, realizations

involving up to 300 modes were treated, for which ML-GMCTDH proved at least as fast

and efficient as its ML-MCTDH counterpart – and, in fact, even faster for the most favor-

able multi-layer construction, with a CPU time of 16 hours (single-thread) for a 300-mode

calculation over 200 fs, as compared with 24 hours for the corresponding ML-MCTDH cal-

culation. The ML-GMCTDH results are of high accuracy, and memory requirements tend

to be favorable. In general, the performance of the method will depend on the number of

GWPs – as compared with standard SPFs – that are required to accurately describe the

dynamics of the last layer. As a rule of thumb, weakly coupled modes can be combined into

multi-dimensional GWPs in the last layer, while strong correlations are naturally handled

by the multi-layer structure.

The vibronic model Hamiltonian employed in the present study is a basic example of first-

principles parametrized lattice Hamiltonians that can be expanded to much larger system
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sizes44–46 in order to permit a full quantum treatment of photoinduced dynamics in molec-

ular materials. Excited-state dynamics in these systems are characterized by electronic

delocalization and strong electron-phonon (vibronic) coupling, both of which require accu-

rate quantum dynamical approaches. Long-lived coherent vibronic features as observed in

the present model complex indeed appear in spatially extended systems with dense elec-

tronic manifolds, too.40,51,65 As underscored by our previous studies,11,52 more approximate

quantum-classical approaches may fail for this type of systems. For these reasons, on-the-fly

dynamics for these systems, which is often restricted to Ehrenfest molecular dynamics66 or

Surface-Hopping dynamics,67 remain highly challenging.

Even though the present system is described by a basic linear vibronic coupling model with

a large number of displaced harmonic-oscillator modes, several effects make the observed

dynamics non-trivial. First, an ultrafast, coherent charge transfer event takes place which

leads to a stationary coherent superposition state. These features alone are sufficient to lead

to a complete failure of simple mean-field methods, necessitating a highly correlated treat-

ment. Furthermore, the observed dynamics is induced by vibronic effects, specifically due

the ubiquitous high-frequency CC and CS stretch modes, along with lower-frequency modes

that provide a dense distribution of states and an inter-fragment mode that modulates the

electronic coupling. These features make the propagation demanding and representative of

dynamics in more complex systems. Finally, we did not include temperature effects in the

present analysis – relying on earlier work on this system which showed that the effects are

negligible for the ultrafast nonadiabatic dynamics42 – but temperature does play a key role,

e.g., for diffusive processes68 which can be advantageously treated in the ML-GMCTDH

framework.

Overall, the present approach bridges the gap between moving GWP basis sets, which often

lack accuracy and flexibility, and the powerful tensor approaches which have led to MCTDH,

ML-MCTDH, and related schemes. Using Gaussian basis sets in conjunction with novel

potential energy surface fitting strategies, including neural network approaches,69 opens

a flexible approach to the accurate quantum dynamical treatment of large systems. The

ML-GMCTDH approach can be combined with an on-the-fly implementation16 and new
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approaches to adaptive basis sets,70 and prepares the ground for future hybrid approaches

that optimally combine trajectory-based descriptions with both accurate potentials and

accurate quantum dynamics.
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28M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys. Rep. 324, 1 (2000).

32

    
Th

is 
is 

the
 au

tho
r’s

 pe
er

 re
vie

we
d, 

ac
ce

pte
d m

an
us

cri
pt.

 H
ow

ev
er

, th
e o

nli
ne

 ve
rsi

on
 of

 re
co

rd
 w

ill 
be

 di
ffe

re
nt 

fro
m 

thi
s v

er
sio

n o
nc

e i
t h

as
 be

en
 co

py
ed

ite
d a

nd
 ty

pe
se

t. 
PL

EA
SE

 C
IT

E 
TH

IS
 A

RT
IC

LE
 A

S 
DO

I: 1
0.1

06
3/5

.00
46

93
3



29H. Wang and M. Thoss, J. Chem. Phys. 119, 1289 (2003).

30H. Wang, J. Phys. Chem. A 119, 7951 (2015).

31U. Manthe, J. Chem. Phys. 128, 164116 (2008).

32O. Vendrell and H.-D. Meyer, J. Chem. Phys. 134, 044135 (2011).

33X. Xie et al., J. Chem. Phys. 151, 224101 (2019).
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