52 research outputs found

    Parvalbumin, calbindin, or calretinin in cortically projecting and GABAergic, cholinergic, or glutamatergic basal forebrain neurons of the rat

    Get PDF
    The basal forebrain (BF) plays an important role in modulating cortical activity and facilitating processes of attention, learning, and memory. This role is subserved by cholinergic neurons but also requires the participation of other noncholinergic neurons. Noncholinergic neurons include gamma-amino butyric acidergic (GABAergic) neurons, some of which project in parallel with the cholinergic cells to the cerebral cortex, others of which project caudally or locally. With the original aim of distinguishing different subgroups of GABAergic neurons, we examined immunostaining for the calcium binding proteins (CBPs) parvalbumin (Parv), calbindin (Calb), and calretinin (Calret) in the rat. Although the CBP(+) cell groups were distributed in a coextensive manner with the GABAergic cells, they were collectively more numerous. Of cells retrogradely labeled with cholera toxin (CT) from the prefrontal or parietal cortex, Parv(+) and Calb(+) cells, but not Calret(+) cells, represented substantial proportions ( approximately 35-45% each) that collectively were greater than that of GABAergic projection neurons. From dual immunostaining for the CBPs and glutamic acid decarboxylase (GAD), it appeared that the vast majority (>90%) of the Parv(+) group was GAD(+), whereas only a small minority (40%) and Calret(+) (>80%) neurons were immunopositive for phosphate-activated glutaminase, the synthetic enzyme for transmitter glutamate. The results suggested that, whereas Calret(+) cells predominantly comprise caudally or locally projecting, possibly glutamatergic BF neurons, Parv(+) cells likely comprise the cortically projecting GABAergic BF neurons and Calb(+) cells the cortically projecting, possibly glutamatergic BF neurons that would collectively participate with the cholinergic cells in the modulation of cortical activity. Copyright 2003 Wiley-Liss, Inc

    Intraosseous Schwannoma of the Jaws: An Updated Review of the Literature and Report of 2 New Cases Affecting the Mandible

    Full text link
    Schwannomas are benign nerve sheath neoplasms composed almost entirely of Schwann cells. These tumors most often arise in the soft tissues of the head and neck. However, seldom do they occur within bone. This article presents a rare case of a recurrent intraosseous schwannoma of the anterior mandible and another case of a posterior intraosseous mandibular schwannoma accessed via a sagittal split ramus osteotomy. Furthermore, we provide an updated review of the literature on intraosseous schwannomas affecting the mandible and maxilla

    Effect of the carrier material, drying technology and dissolution media on the viability of Lactobacillus fermentum K73 during simulated gastrointestinal transit

    Get PDF
    The goal of this study was to determine the effect of the carrier material, drying technology and dissolution media during the passage of L. fermentum K73 through a dynamic in vitro digestion system (IViDiS). The carrier materials were (i) culture medium with growing micro-organisms and (ii) culture medium with maltodextrin : sweet whey [0.6 : 0.4]. The carrier materials were dried by spray-drying and freeze-drying to obtain four types of powders. The dissolution media consisted of water and 1% fat milk. The powders were tested using an in vitro dynamic digestion system (IViDiS). The results showed that powders derived from culture medium had the highest protective effect on the viability of L. fermentum K73 in both dissolution media and that survival increased when the powders were tested in milk. The modified Gompertz model was used to model L. fermentum K73 behaviour during the digestion process. The model showed that cells entrapped in culture medium had the longest lag phase and the slowest inactivation rate when evaluated in milk

    Track D Social Science, Human Rights and Political Science

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/138414/1/jia218442.pd

    Stereological estimates of the basal forebrain cell population in the rat, including neurons containing choline acetyltransferase, glutamic acid decarboxylase or phosphate-activated glutaminase and colocalizing vesicular glutamate transporters

    No full text
    The basal forebrain (BF) plays an important role in modulating cortical activity and influencing attention, learning and memory. These activities are fulfilled importantly yet not entirely by cholinergic neurons. Noncholinergic neurons also contribute and comprise GABAergic neurons and other possibly glutamatergic neurons. The aim of the present study was to estimate the total number of cells in the BF of the rat and the proportions of that total represented by cholinergic, GABAergic and glutamatergic neurons. For this purpose, cells were counted using unbiased stereological methods within the medial septum, diagonal band, magnocellular preoptic nucleus, substantia innominata and globus pallidus in sections stained for Nissl substance and/or the neurotransmitter enzymes, choline acetyltransferase (ChAT), glutamic acid decarboxylase (GAD) or phosphate-activated glutaminase (PAG). In Nissl-stained sections, the total number of neurons in the BF was estimated as similar to 355,000 and the numbers of ChAT-immuno-positive (+) as similar to 22,000, GAD+ similar to 119,000 and PAG+ similar to 316,000, corresponding to similar to 5%, similar to 35% and similar to 90% of the total. Thus, of the large population of BF neurons, only a small proportion has the capacity to synthesize acetylcholine (ACh), one third to synthesize GABA and the vast majority to synthesize glutamate (Glu). Moreover, through the presence of PAG, a proportion of ACh- and GABA-synthesizing neurons also has the capacity to synthesize Glu. In sections dual fluorescent immunostained for vesicular transporters, vesicular glutamate transporter (VGluT) 3 and not VGluT2 was present in the cell bodies of most PAG+ and ChAT+ and half the GAD+ cells. Given previous results showing that VGluT2 and not VGluT3 was present in BF axon terminals and not colocalized with VAChT or VGAT, we conclude that the BF cell population influences cortical and subcortical regions through neurons which release ACh, GABA or Glu from their terminals but which in part can also synthesize and release Glu from their soma or dendrites. (c) 2006 IBRO. Published by Elsevier Ltd. All rights reserved
    • …
    corecore