71 research outputs found
Hypoxia induces protection against etoposide-induced apoptosis: molecular profiling of changes in gene expression and transcription factor activity
Background: it is now well established that hypoxia renders tumor cells resistant to radio- but
also chemotherapy. However, few elements are currently available as for the mechanisms
underlying this protection.
Results: in this study, physiological hypoxia was shown to inhibit apoptosis induced in HepG2 cells
by etoposide. Indeed, hypoxia reduced DNA fragmentation, caspase activation and PARP cleavage.
The DNA binding activity of 10 transcription factors was followed while the actual transcriptional
activity was measured using specific reporter plasmids. Of note is the inhibition of the etoposideinduced
activation of p53 under hypoxia. In parallel, data from low density DNA microarrays
indicate that the expression of several pro- and anti-apoptotic genes was modified, among which
are Bax and Bak whose expression profile paralleled p53 activity. Cluster analysis of data unravels
several possible pathways involved in the hypoxia-induced protection against etoposide-induced
apoptosis: one of them could be the inhibition of p53 activity under hypoxia since caspase 3 activity
parallels Bax and Bak expression profile. Moreover, specific downregulation of HIF-1α by RNA
interference significantly enhanced apoptosis under hypoxia possibly by preventing the hypoxia
mediated decrease in Bak expression without altering Bax expression.
Conclusion: these results are a clear demonstration that hypoxia has a direct protective effect on
apoptotic cell death. Moreover, molecular profiling points to putative pathways responsible for
tumor growth in challenging environmental conditions and cancer cell resistance to
chemotherapeutic agents
Perturbation of the Dimer Interface of Triosephosphate Isomerase and its Effect on Trypanosoma cruzi
Most of the enzymes of parasites have their counterpart in the host. Throughout evolution, the three-dimensional architecture of enzymes and their catalytic sites are highly conserved. Thus, identifying molecules that act exclusively on the active sites of the enzymes from parasites is a difficult task. However, it is documented that the majority of enzymes consist of various subunits, and that conservation in the interface of the subunits is lower than in the catalytic site. Indeed, we found that there are significant differences in the interface between the two subunits of triosephosphate isomerase from Homo sapiens and Trypanosoma cruzi (TcTIM), which causes Chagas disease in the American continent. In the search for agents that specifically inhibit TcTIM, we found that 2,2′-dithioaniline (DTDA) is far more effective in inactivating TcTIM than the human enzyme, and that its detrimental effect is due to perturbation of the dimer interface. Remarkably, DTDA prevented the growth of Escherichia coli cells that had TcTIM instead of their own TIM and killed T. cruzi epimastigotes in culture. Thus, this study highlights a new approach base of targeting molecular interfaces of dimers
A Ribosomal Misincorporation of Lys for Arg in Human Triosephosphate Isomerase Expressed in Escherichia coli Gives Rise to Two Protein Populations
We previously observed that human homodimeric triosephosphate isomerase (HsTIM) expressed in Escherichia coli and purified to apparent homogeneity exhibits two significantly different thermal transitions. A detailed exploration of the phenomenon showed that the preparations contain two proteins; one has the expected theoretical mass, while the mass of the other is 28 Da lower. The two proteins were separated by size exclusion chromatography in 3 M urea. Both proteins correspond to HsTIM as shown by Tandem Mass Spectrometry (LC/ESI-MS/MS). The two proteins were present in nearly equimolar amounts under certain growth conditions. They were catalytically active, but differed in molecular mass, thermostability, susceptibility to urea and proteinase K. An analysis of the nucleotides in the human TIM gene revealed the presence of six codons that are not commonly used in E. coli. We examined if they were related to the formation of the two proteins. We found that expression of the enzyme in a strain that contains extra copies of genes that encode for tRNAs that frequently limit translation of heterologous proteins (Arg, Ile, Leu), as well as silent mutations of two consecutive rare Arg codons (positions 98 and 99), led to the exclusive production of the more stable protein. Further analysis by LC/ESI-MS/MS showed that the 28 Da mass difference is due to the substitution of a Lys for an Arg residue at position 99. Overall, our work shows that two proteins with different biochemical and biophysical properties that coexist in the same cell environment are translated from the same nucleotide sequence frame
DUX4c Is Up-Regulated in FSHD. It Induces the MYF5 Protein and Human Myoblast Proliferation
Facioscapulohumeral muscular dystrophy (FSHD) is a dominant disease linked to contractions of the D4Z4 repeat array in 4q35. We have previously identified a double homeobox gene (DUX4) within each D4Z4 unit that encodes a transcription factor expressed in FSHD but not control myoblasts. DUX4 and its target genes contribute to the global dysregulation of gene expression observed in FSHD. We have now characterized the homologous DUX4c gene mapped 42 kb centromeric of the D4Z4 repeat array. It encodes a 47-kDa protein with a double homeodomain identical to DUX4 but divergent in the carboxyl-terminal region. DUX4c was detected in primary myoblast extracts by Western blot with a specific antiserum, and was induced upon differentiation. The protein was increased about 2-fold in FSHD versus control myotubes but reached 2-10-fold induction in FSHD muscle biopsies. We have shown by Western blot and by a DNA-binding assay that DUX4c over-expression induced the MYF5 myogenic regulator and its DNA-binding activity. DUX4c might stabilize the MYF5 protein as we detected their interaction by co-immunoprecipitation. In keeping with the known role of Myf5 in myoblast accumulation during mouse muscle regeneration DUX4c over-expression activated proliferation of human primary myoblasts and inhibited their differentiation. Altogether, these results suggested that DUX4c could be involved in muscle regeneration and that changes in its expression could contribute to the FSHD pathology
‘Mise au point de damier(s) pour mesurer des facteurs de transcription impliqués dans l’oncogenèse (présentation du travail de Véronique Mainfroid - EAT)’ & ‘Identification de biomarqueurs de surface pour l’imagerie utilisables en diagnostique’
Validation of tumoral biomarkers using proteomic methods
Evidence for a Second Receptor Binding Site on Human Prolactin
The existence of a second receptor binding site on human prolactin (hPRL) was investigated by site-directed mutagenesis. First, 12 residues of helices 1 and 3 were mutated to alanine. Since none of the resulting mutants exhibit reduced bioactivity in the Nb2 cell proliferation bioassay, the mutated residues do not appear to be functionally necessary. Next, small residues surrounding the helix 1-helix 3 interface were replaced with Arg and/or Trp, the aim being to sterically hinder the second binding site. Several of these mutants exhibit only weak agonistic properties, supporting our hypothesis that the channel between helices 1 and 3 is involved in a second receptor binding site. We then analyzed the antagonistic and self-antagonistic properties of native hPRL and of several hPRLs analogs altered at binding site 1 or 2. Even at high concentrations (approximately 10 microM), no self-inhibition was observed with native hPRL; site 2 hPRL mutants self-antagonized while site 1 mutants did not. From these data, we propose a model of hPRL-PRL receptor interaction which slightly differs from that proposed earlier for the homologous human growth hormone (hGH) (Fuh, G., Cunningham, B. C., Fukunaga, R., Nagata, S., and Goeddel, D. V., and Well, J. A. (1992) Science 256, 1677-1680). Like hGH, hPRL would bind sequentially to two receptor molecules, first through site 1, then through site 2, but we would expect the two sites of hPRL to display, unlike the two binding sites of hGH, about the same binding affinity, thus preventing self-antagonism at high concentrations
Characterization of lactogen receptor-binding site 1 of human prolactin
peer reviewedProlactin (PRL) binds to two molecules of PRL receptor (PRLR) through two regions referred to as binding sites 1 and 2. Although binding site 1 has been generally assigned to the pocket delimited by helix 1, helix 4, and the second half of loop 1, the residues involved in receptor binding have not yet all been precisely identified. In an earlier alanine-scanning mutational study, we identified three major binding determinants in loop 1 of human PRL (hPRL) (Goffin, V., Norman, M. & Martial, J. A.(1992) Mol. Endocrinol. 6, 1381-1392). Here we focus on the two other regions that form binding site 1, namely helices 1 and 4. Putative binding residues, selected on the basis of a three-dimensional model of hPRL constructed in this laboratory, were mutated to alanine, and recombinant hPRL mutants produced in Escherichia coli were tested for their ability to bind to the PRLR and to stimulate Nb2 cell proliferation. We thus identified nine single mutations (three in helix 1 and six in helix 4) whose effect was to reduce both binding and mitogenic activity by more than half as compared with wild-type hPRL, indicating the functional involvement of the corresponding residues. Adding these to the three binding determinants identified in loop 1, we now propose a complete picture of PRLR-binding site 1 of hPRL. As we earlier hypothesized, the binding site 1 determinants of hPRL differ from those of human growth hormone, a hPRL homolog
- …