152 research outputs found

    Enhancement of Ethanol Production in Electrochemical Cell by Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalus (CDBT7)

    Get PDF
    Bioethanol (a renewable resource), blended with gasoline, is used as liquid transportation fuel worldwide and produced from either starch or lignocellulose. Local production and use of bioethanol supports local economies, decreases country's carbon footprint and promotes self-sufficiency. The latter is especially important for bio-resource-rich land-locked countries like Nepal that are seeking alternative transportation fuels and technologies to produce them. In that regard, in the present study, we have used two highly efficient ethanol producing yeast strains, viz., Saccharomyces cerevisiae (CDBT2) and Wickerhamomyces anomalous (CDBT7), in an electrochemical cell to enhance ethanol production. Ethanol production by CDBT2 (anodic chamber) and CDBT7 (cathodic chamber) control cultures, using 5% glucose as substrate, were 12.6 ± 0.42 and 10.1 ± 0.17 mg·mL−1 respectively. These cultures in the electrochemical cell, when externally supplied with 4V, the ethanol production was enhanced by 19.8 ± 0.50% and 23.7 ± 0.51%, respectively, as compared to the control cultures. On the other hand, co-culturing of those two yeast strains in both electrode compartments resulted only 3.96 ± 0.83% enhancement in ethanol production. Immobilization of CDBT7 in the graphite cathode resulted in lower enhancement of ethanol production (5.30 ± 0.82%), less than free cell culture of CDBT7. CDBT2 and CDBT7 when cultured in platinum nano particle coated platinum anode and neutral red-coated graphite cathode, respectively, ethanol production was substantially enhanced (52.8 ± 0.44%). The above experiments when repeated using lignocellulosic biomass hydrolysate (reducing sugar content was 3.3%) as substrate, resulted in even better enhancement in ethanol production (61.5 ± 0.12%) as compared to glucose. The results concluded that CDBT2 and CDBT7 yeast strains produced ethanol efficiently from both glucose and lignocellulosic biomass hydrolysate. Ethanol production was enhanced in the presence of low levels of externally applied voltage. Ethanol production was further enhanced with the better electron transport provision i.e., when neutral red was deposited on cathode and fine platinum nanoparticles were coated on the platinum anode

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope

    RELICS: Strong Lens Models for Five Galaxy Clusters From the Reionization Lensing Cluster Survey

    Get PDF
    Strong gravitational lensing by galaxy clusters magnifies background galaxies, enhancing our ability to discover statistically significant samples of galaxies at z>6, in order to constrain the high-redshift galaxy luminosity functions. Here, we present the first five lens models out of the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury Program, based on new HST WFC3/IR and ACS imaging of the clusters RXC J0142.9+4438, Abell 2537, Abell 2163, RXC J2211.7-0349, and ACT-CLJ0102-49151. The derived lensing magnification is essential for estimating the intrinsic properties of high-redshift galaxy candidates, and properly accounting for the survey volume. We report on new spectroscopic redshifts of multiply imaged lensed galaxies behind these clusters, which are used as constraints, and detail our strategy to reduce systematic uncertainties due to lack of spectroscopic information. In addition, we quantify the uncertainty on the lensing magnification due to statistical and systematic errors related to the lens modeling process, and find that in all but one cluster, the magnification is constrained to better than 20% in at least 80% of the field of view, including statistical and systematic uncertainties. The five clusters presented in this paper span the range of masses and redshifts of the clusters in the RELICS program. We find that they exhibit similar strong lensing efficiencies to the clusters targeted by the Hubble Frontier Fields within the WFC3/IR field of view. Outputs of the lens models are made available to the community through the Mikulski Archive for Space TelescopesComment: Accepted to Ap

    RELICS: High-Resolution Constraints on the Inner Mass Distribution of the z=0.83 Merging Cluster RXJ0152.7-1357 from strong lensing

    Get PDF
    Strong gravitational lensing (SL) is a powerful means to map the distribution of dark matter. In this work, we perform a SL analysis of the prominent X-ray cluster RXJ0152.7-1357 (z=0.83, also known as CL 0152.7-1357) in \textit{Hubble Space Telescope} images, taken in the framework of the Reionization Lensing Cluster Survey (RELICS). On top of a previously known z=3.93z=3.93 galaxy multiply imaged by RXJ0152.7-1357, for which we identify an additional multiple image, guided by a light-traces-mass approach we identify seven new sets of multiply imaged background sources lensed by this cluster, spanning the redshift range [1.79-3.93]. A total of 25 multiple images are seen over a small area of ~0.4 arcmin2arcmin^2, allowing us to put relatively high-resolution constraints on the inner matter distribution. Although modestly massive, the high degree of substructure together with its very elongated shape make RXJ0152.7-1357 a very efficient lens for its size. This cluster also comprises the third-largest sample of z~6-7 candidates in the RELICS survey. Finally, we present a comparison of our resulting mass distribution and magnification estimates with those from a Lenstool model. These models are made publicly available through the MAST archive.Comment: 15 Pages, 7 Figures, 4 Tables Accepted for publication in Ap

    RELICS: Properties of z>5.5 Galaxies Inferred from Spitzer and Hubble Imaging Including A Candidate z~6.8 Strong [OIII] Emitter

    Full text link
    We present constraints on the physical properties (including stellar mass, age, and star formation rate) of 207 6z86\lesssim z \lesssim8 galaxy candidates from the Reionization Lensing Cluster Survey (RELICS) and companion Spitzer-RELICS surveys. We measure photometry using T-PHOT and perform spectral energy distribution fitting using EAzzY and BAGPIPES. Of the 207 candidates for which we could successfully measure Spitzer fluxes, 23 were demoted to likely low redshift (z<4z<4). Among the remaining high redshift candidates, we find intrinsic stellar masses between 1×106M1\times10^6\rm{M_{\odot}} and 4×109M4\times10^9\rm{M_\odot}, and rest-frame UV absolute magnitudes between 22.6-22.6 and 14.5-14.5 mag. While our sample is mostly comprised of LUV/LUV<1L_{UV}/L^*_{UV}<1 galaxies, there are a number of brighter objects in the sample, extending to LUV/LUV2L_{UV}/L^*_{UV}\sim2. The galaxies in our sample span approximately four orders of magnitude in stellar mass and star-formation rates, and exhibit ages ranging from maximally young to maximally old. We highlight 11 galaxies which have detections in Spitzer/IRAC imaging and redshift estimates z6.5z\geq6.5, several of which show evidence for some combination of evolved stellar populations, large contributions of nebular emission lines, and/or dust. Among these is PLCKG287+32-2013, one of the brightest z7z\sim7 candidates known (AB mag 24.9) with a Spitzer 3.6μ\mum flux excess suggesting strong [OIII] + H-β\beta emission (\sim1000\AA\ rest-frame equivalent width). We discuss the possible uses and limits of our sample and present a public catalog of Hubble 0.4--1.6μ\mum + Spitzer 3.6μ\mum and 4.5μ\mum photometry along with physical property estimates for all 207 objects in the sample. Because of their apparent brightnesses, high redshifts, and variety of stellar populations, these objects are excellent targets for follow-up with James Webb Space Telescope.Comment: 20 pages, 9 figure

    A Candidate z10z\sim10 Galaxy Strongly Lensed into a Spatially Resolved Arc

    Full text link
    The most distant galaxies known are at z~10-11, observed 400-500 Myr after the Big Bang. The few z~10-11 candidates discovered to date have been exceptionally small- barely resolved, if at all, by the Hubble Space Telescope. Here we present the discovery of SPT0615-JD, a fortuitous z~10 (z_phot=9.9+/-0.6) galaxy candidate stretched into an arc over ~2.5" by the effects of strong gravitational lensing. Discovered in the Reionization Lensing Cluster Survey (RELICS) Hubble Treasury program and companion S-RELICS Spitzer program, this candidate has a lensed H-band magnitude of 25.7+/-0.1 AB mag. With a magnification of \mu~4-7 estimated from our lens models, the de-lensed intrinsic magnitude is 27.6+/-0.3 AB mag, and the half-light radius is r_e<0.8 kpc, both consistent with other z>9 candidates. The inferred stellar mass (log [M* /M_Sun]=9.7^{+0.7}_{-0.5}) and star formation rate (\log [SFR/M_Sun yr^{-1}]=1.3^{+0.2}_{-0.3}) indicate that this candidate is a typical star-forming galaxy on the z>6 SFR-M* relation. We note that three independent lens models predict two counterimages, at least one of which should be of a similar magnitude to the arc, but these counterimages are not yet detected. Counterimages would not be expected if the arc were at lower redshift. However, the only spectral energy distributions capable of fitting the Hubble and Spitzer photometry well at lower redshifts require unphysical combinations of z~2 galaxy properties. The unprecedented lensed size of this z~10 candidate offers the potential for the James Webb Space Telescope to study the geometric and kinematic properties of a galaxy observed 500 Myr after the Big Bang.Comment: 7 pages, 4 figures. Submitted to ApJ Letter

    The glycoprotein-hormones activin A and inhibin A interfere with dendritic cell maturation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pregnancy represents an exclusive situation in which the immune and the endocrine system cooperate to prevent rejection of the embryo by the maternal immune system. While immature dendritic cells (iDC) in the early pregnancy decidua presumably contribute to the establishment of peripheral tolerance, glycoprotein-hormones of the transforming growth factor beta (TGF-beta) family including activin A (ActA) and inhibin A (InA) are candidates that could direct the differentiation of DCs into a tolerance-inducing phenotype.</p> <p>Methods</p> <p>To test this hypothesis we generated iDCs from peripheral-blood-monocytes and exposed them to TGF-beta1, ActA, as well as InA and Dexamethasone (Dex) as controls.</p> <p>Results</p> <p>Both glycoprotein-hormones prevented up-regulation of HLA-DR during cytokine-induced DC maturation similar to Dex but did not influence the expression of CD 40, CD 83 and CD 86. Visualization of the F-actin cytoskeleton confirmed that the DCs retained a partially immature phenotype under these conditions. The T-cell stimulatory capacity of DCs was reduced after ActA and InA exposure while the secretion of cytokines and chemokines was unaffected.</p> <p>Conclusion</p> <p>These findings suggest that ActA and InA interfere with selected aspects of DC maturation and may thereby help preventing activation of allogenic T-cells by the embryo. Thus, we have identified two novel members of the TGF-beta superfamily that could promote the generation of tolerance-inducing DCs.</p

    RELICS: A Strong Lens Model for SPT-CLJ0615-5746, a z=0.972 Cluster

    Get PDF
    We present a lens model for the cluster SPT-CLJ0615-5746, which is the highest redshift (z=0.972z=0.972) system in the Reionization of Lensing Clusters Survey (RELICS), making it the highest redshift cluster for which a full strong lens model is published. We identify three systems of multiply-imaged lensed galaxies, two of which we spectroscopically confirm at z=1.358z=1.358 and z=4.013z=4.013, which we use as constraints for the model. We find a foreground structure at z0.4z\sim0.4, which we include as a second cluster-sized halo in one of our models; however two different statistical tests find the best-fit model consists of one cluster-sized halo combined with three individually optimized galaxy-sized halos, as well as contributions from the cluster galaxies themselves. We find the total projected mass density within r=26.7"r=26.7" (the region where the strong lensing constraints exist) to be M=2.510.09+0.15×1014M=2.51^{+0.15}_{-0.09}\times 10^{14}~M_{\odot}. If we extrapolate out to r500r_{500}, our projected mass density is consistent with the mass inferred from weak lensing and from the Sunyaev-Zel'dovich effect (M1015M\sim10^{15}~M_{\odot}). This cluster is lensing a previously reported z10z\sim10 galaxy, which, if spectroscopically confirmed, will be the highest-redshift strongly lensed galaxy known.Comment: 15 pages, 8 figures 4 tables. ApJ Accepte

    RELICS: The Reionization Lensing Cluster Survey and the Brightest High-z Galaxies

    Get PDF
    Massive foreground galaxy clusters magnify and distort the light of objects behind them, permitting a view into both the extremely distant and intrinsically faint galaxy populations. We present here the z ~ 6-8 candidate high-redshift galaxies from the Reionization Lensing Cluster Survey (RELICS), a Hubble and Spitzer Space Telescope survey of 41 massive galaxy clusters spanning an area of ≈200 arcmin². These clusters were selected to be excellent lenses, and we find similar high-redshift sample sizes and magnitude distributions as the Cluster Lensing And Supernova survey with Hubble (CLASH). We discover 257, 57, and eight candidate galaxies at z ~ 6, 7, and 8 respectively, (322 in total). The observed (lensed) magnitudes of the z ~ 6 candidates are as bright as AB mag ~23, making them among the brightest known at these redshifts, comparable with discoveries from much wider, blank-field surveys. RELICS demonstrates the efficiency of using strong gravitational lenses to produce high-redshift samples in the epoch of reionization. These brightly observed galaxies are excellent targets for follow-up study with current and future observatories, including the James Webb Space Telescope
    corecore