104 research outputs found
Diversity gain of one-shot communication over molecular timing channels
We study diversity in one-shot communication over molecular timing channels.
In the considered channel model the transmitter simultaneously releases a large
number of information particles, where the information is encoded in the time
of release. The receiver decodes the information based on the random time of
arrival of the information particles. We characterize the asymptotic
exponential decrease rate of the probability of error as a function of the
number of released particles. We denote this quantity as the system diversity
gain, as it depends both on the number of particles transmitted as well as the
receiver detection method. Three types of detectors are considered: the
maximumlikelihood (ML) detector, a linear detector, and a detector that is
based on the first arrival (FA) among all the transmitted particles. We show
that for random propagation characterized by right-sided unimodal densities
with zero mode, the FA detector is equivalent to the ML detector, and
significantly outperforms the linear detector. Moreover, even for densities
with positive mode, the diversity gain achieved by the FA detector is very
close to that achieved by the ML detector and much higher than the gain
achieved by the linear detector.Comment: To be presented at GLOBECOM 201
Optimal Pricing to Manage Electric Vehicles in Coupled Power and Transportation Networks
We study the system-level effects of the introduction of large populations of
Electric Vehicles on the power and transportation networks. We assume that each
EV owner solves a decision problem to pick a cost-minimizing charge and travel
plan. This individual decision takes into account traffic congestion in the
transportation network, affecting travel times, as well as as congestion in the
power grid, resulting in spatial variations in electricity prices for battery
charging. We show that this decision problem is equivalent to finding the
shortest path on an "extended" transportation graph, with virtual arcs that
represent charging options. Using this extended graph, we study the collective
effects of a large number of EV owners individually solving this path planning
problem. We propose a scheme in which independent power and transportation
system operators can collaborate to manage each network towards a socially
optimum operating point while keeping the operational data of each system
private. We further study the optimal reserve capacity requirements for pricing
in the absence of such collaboration. We showcase numerically that a lack of
attention to interdependencies between the two infrastructures can have adverse
operational effects.Comment: Submitted to IEEE Transactions on Control of Network Systems on June
1st 201
Natural pesticides for pest control in agricultural crops: an alternative and eco-friendly method
Biological pesticides are pesticides derived from natural materials such as bacteria, plants, and minerals that are applied to crops to kill pests. Biopesticides are targeted, inexpensive, eco-friendly, sustainable, leave no trace, and are not associated with the production of greenhouse gases. It contributes significantly to the agricultural bio-economy's sustainability. The advantages to the ecosystem provided by many significant biological resources justify the incorporation of biopesticides in Integrated Pest Management (IPM) programs. Through advancements in research and development, the use of biopesticides has significantly reduced environmental contamination. The development of biopesticides promotes agricultural modernization and will surely result in a gradual phase-out of chemical pesticides. Although synthetic pesticides have positive effects on crop yield and productivity, they also have some negative impacts on soil biodiversity, animals, aquatic life, and humans. In general, synthetic pesticides make the soil brittle, decrease soil respiration, and reduce the activity of some soil microorganisms, such as earthworms. Pesticide buildup in bodies of water can spread from aquatic life to animals including people, as their biomagnification can cause fatal diseases like cancer, kidney disease, rashes on the skin, diabetes, etc. Biopesticides, on the other hand, have surfaced and have proven to be quite beneficial in the management of pests and are safe for the environment and hence have emerged as very useful in the control of pests with a lot of merits. The present review provides a broad perspective on the different kinds of pesticides. We analyzed suitable and environmentally friendly ways to improve the acceptance and industrial application of microbial herbicides, phytopesticides, and nano biopesticides for plant nutrition, crop protection/yield, animal/human health promotion, as well as their potential integration into the integrated pest management system
Plant growth promotion and antifungal activities of the mango phyllosphere bacterial consortium for the management of Fusarium wilt disease in pea (Pisum sativum L.)
Root rot caused by the pathogen Fusarium oxysporum is the number one cause of pea plant (P. sativum L.) death. There are many potential advantages to using rhizobacteria, endophytic bacteria and phyllospheric bacteria for managing plant diseases and promoting plant growth. This study investigated the potentiality of consortium species of bacteria to suppress root rot disease and their ability to promote the growth of pea plants compared with their individual and control plants. A total of 55 phyllospheric bacteria were isolated from mango flower and Bacillus sp. LBF- 02, Bacillus sp. LBF- 03 and Bacillus sp. LBF- 05 showed the most potent antimicrobial activity against root rot pathogens in a dual culture assay. Identification of phyllobacterial strain LBF- 01, LBF- 03 and LBF-05 were done by 16S rDNA sequence analysis using 704f forward primer (50-AGATTTTCCGACGGCAGGTT-30) and 907r reverse primer (50-CCGTCAATTCMTTTRAGTTT-30) with the PCR conditions. Their ability to solubilize phosphate, produce ammonia, siderophore and indole acetic acid, as well as produce extracellular enzymes in vitro was excellent. The results of a greenhouse study found that pea seed treated with consortium isolate significantly increased high germination rates and vigour indexes, as well as shoot and root length, fresh and dry weights, as compared with seed treated with single isolate and control. The defense enzyme activities in consortium treated pots were higher than those in individual and control pots. The plants treated with consortium exhibited higher levels of chlorophyll and carotenoids content in their leaves compared to the untreated control and single treated plants. A significant variation in the chemical profile of pea plants was found (F7,16 ? 2.598; P ? 0.048) resulting from different treatments (T1-T8). After evaluating a variety of growth and microbiological parameters, it was concluded that inoculation with the microbial consortium contributed to raising healthy and vigorously growing pea seedlings in greenhouse conditions, which is applicable in the field in future for sustainable farming
Effect of nickel addition on enhancing nano-structuring and suppressing TRIP effect in Fe40Mn40Co10Cr10 high entropy alloy during high-pressure torsion
The present work unravels the effect of nickel (Ni) addition on the deformation mechanism and hardness evolution in a Fe40Mn40Co10Cr10 high entropy alloy (HEA) during high-pressure torsion (HPT) processing. For this purpose, two variants of the high entropy Cantor alloy, with compositions (atomic%) Fe40Mn40Co10Cr10 (Ni0 alloy) and Fe35Mn35Co10Cr10Ni10 (Ni10 alloy) were selected. The study revealed a transition in the predominant plasticity mechanism with addition of Ni from TRIP in Ni0 to dislocation slip in Ni10 alloy. Such transition of plasticity mechanism was the direct consequence of an increase in the free energy of phase transformation, delta G(gamma ->epsilon) towards a more positive value with Ni addition. Interestingly, the Ni10 alloy showed a greater extent of nano-structuring than the Ni0 alloy with nearly three-fold refined grain sizes, that is, lesser than 30 nm in Ni10 alloy and ~90 nm in Ni0 alloy. Furthermore, a 3-4 times higher dislocation density was observed in the FCC phase of the Ni10 alloy compared to that in the transformed HCP phase in the Ni0 alloy for any given HPT processing conditions. These differences in mechanism(s) of deformation and the extent of nano-structuring manifested as a greater ability of Ni added Ni10 alloy to harden itself during HPT. The present study suggests that a large fraction of hard HCP phase originating from TRIP effect in the Ni0 alloy has a lower hardening ability than the high dislocation density and nano-structuring in the Ni10 alloy
- …
