118 research outputs found

    Advantages of nonclassical pointer states in postselected weak measurements

    Get PDF
    We investigate, within the weak measurement theory, the advantages of non-classical pointer states over semi-classical ones for coherent, squeezed vacuum, and Schr\"{o}inger cat states. These states are utilized as pointer state for the system operator A^\hat{A} with property A^2=I^\hat{A}^{2}=\hat{I}, where I^\hat{I} represents the identity operator. We calculate the ratio between the signal-to-noise ratio (SNR) of non-postselected and postselected weak measurements. The latter is used to find the quantum Fisher information for the above pointer states. The average shifts for those pointer states with arbitrary interaction strength are investigated in detail. One key result is that we find the postselected weak measurement scheme for non-classical pointer states to be superior to semi-classical ones. This can improve the precision of measurement process.Comment: 8 pages, 5 figure

    The effect of diffusive re-equilibration time on trace element partitioning between alkali feldspar and trachytic melts

    Full text link
    We present new experimental data on major and trace element partition coefficients between alkali feldspar and trachytic melt. Experiments were conducted at 500 MPa, 870 890 {\deg}C to investigate through short disequilibrium and long near equilibrium experiments the influence of diffusive re-equilibration on trace element partitioning during crystallization. Our data show that Ba and Sr behave compatibly, and their partition coefficients are influenced by re-equilibration time, orthoclase (Or) content, growth rate and cation order-disorder. High field strength elements (HFSE) and rare earth elements (except Eu) are strongly incompatible, but alkali feldspar efficiently fractionates light (LREE) from heavy rare earth elements (HREE). Our crystallization experiments reveal a strong influence of disequilibrium crystal growth on the partitioning of Ba and Sr. In particular, short-duration experiments show that rapid alkali feldspar crystal growth after nucleation, promotes disordered growth and less selectivity in the partitioning of compatible trace elements that easily enter the crystal lattice (e.g., Ba and Sr)...

    Calcium\u27s Role as Nuanced Modulator of Cellular Physiology in the Brain

    Get PDF
    Neuroscientists studying normal brain aging, spinal cord injury, Alzheimer’s disease (AD) and other neurodegenerative diseases have focused considerable effort on carefully characterizing intracellular perturbations in calcium dynamics or levels. At the cellular level, calcium is known for controlling life and death and orchestrating most events in between. For many years, intracellular calcium has been recognized as an essential ion associated with nearly all cellular functions from cell growth to degeneration. Often the emphasis is on the negative impact of calcium dysregulation and the typical worse-case-scenario leading inevitably to cell death. However, even high amplitude calcium transients, when executed acutely can alter neuronal communication and synaptic strength in positive ways, without necessarily killing neurons. Here, we focus on the evidence that calcium has a subtle and distinctive role in shaping and controlling synaptic events that underpin neuronal communication and that these subtle changes in aging or AD may contribute to cognitive decline. We emphasize that calcium imaging in dendritic components is ultimately necessary to directly test for the presence of age- or disease-associated alterations during periods of synaptic activation

    Novel Calcium-Related Targets of Insulin in Hippocampal Neurons

    Get PDF
    Both insulin signaling disruption and Ca2+ dysregulation are closely related to memory loss during aging and increase the vulnerability to Alzheimer\u27s disease (AD). In hippocampal neurons, aging-related changes in calcium regulatory pathways have been shown to lead to higher intracellular calcium levels and an increase in the Ca2+-dependent afterhyperpolarization (AHP), which is associated with cognitive decline. Recent studies suggest that insulin reduces the Ca2+-dependent AHP. Given the sensitivity of neurons to insulin and evidence that brain insulin signaling is reduced with age, insulin-mediated alterations in calcium homeostasis may underlie the beneficial actions of insulin in the brain. Indeed, increasing insulin signaling in the brain via intranasal delivery has yielded promising results such as improving memory in both clinical and animal studies. However, while several mechanisms have been proposed, few have focused on regulation on intracellular Ca2+. In the present study, we further examined the effects of acute insulin on calcium pathways in primary hippocampal neurons in culture. Using the whole-cell patch-clamp technique, we found that acute insulin delivery reduced voltage-gated calcium currents. Fura-2 imaging was used to also address acute insulin effects on spontaneous and depolarization-mediated Ca2+ transients. Results indicate that insulin reduced Ca2+ transients, which appears to have involved a reduction in ryanodine receptor function. Together, these results suggest insulin regulates pathways that control intracellular Ca2+ which may reduce the AHP and improve memory. This may be one mechanism contributing to improved memory recall in response to intranasal insulin therapy in the clinic

    In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome

    Full text link
    Hippocampus oxidative stress is considered pathogenic in neurodegenerative diseases, such as Alzheimer disease (AD), and in neurodevelopmental disorders, such as Angelman syndrome (AS). Yet clinical benefits of antioxidant treatment for these diseases remain unclear because conventional imaging methods are unable to guide management of therapies in specific hippocampus subfields in vivo that underlie abnormal behavior. Excessive production of paramagnetic free radicals in nonhippocampus brain tissue can be measured in vivo as a greaterâ thanâ normal 1/T1 that is quenchable with antioxidant as measured by quenchâ assisted (Quest) MRI. Here, we further test this approach in phantoms, and we present proofâ ofâ concept data in models of ADâ like and AS hippocampus oxidative stress that also exhibit impaired spatial learning and memory. ADâ like models showed an abnormal gradient along the CA1 dorsalâ ventral axis of excessive free radical production as measured by Quest MRI, and redoxâ sensitive calcium dysregulation as measured by manganeseâ enhanced MRI and electrophysiology. In the AS model, abnormally high free radical levels were observed in dorsal and ventral CA1. Quest MRI is a promising in vivo paradigm for bridging brain subâ field oxidative stress and behavior in animal models and in human patients to better manage antioxidant therapy in devastating neurodegenerative and neurodevelopmental diseases.â Berkowitz, B. A., Lenning J., Khetarpal, N., Tran, C., Wu, J. Y., Berri, A. M., Dernay, K., Haacke, E. M., Shafieâ Khorassani, F., Podolsky, R. H., Gant, J. C., Maimaiti, S., Thibault, O., Murphy, G. G., Bennett, B. M., Roberts, R. In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017). www.fasebj.orgâ Berkowitz, Bruce A., Lenning, Jacob, Khetarpal, Nikita, Tran, Catherine, Wu, Johnny Y., Berri, Ali M., Dernay, Kristin, Haacke, E. Mark, Shafieâ Khorassani, Fatema, Podolsky, Robert H., Gant, John C., Maimaiti, Shaniya, Thibault, Olivier, Murphy, Geoffrey G., Bennett, Brian M., Roberts, Robin, In vivo imaging of prodromal hippocampus CA1 subfield oxidative stress in models of Alzheimer disease and Angelman syndrome. FASEB J. 31, 4179â 4186 (2017)Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/154241/1/fsb2fj201700229r.pd

    HIV Screening and Awareness Survey for Pregnant Women in a Remote Area in Xinjiang Uyghur Autonomous Region of China

    Get PDF
    Objective: The number of people infected with human immunodeficiency virus (HIV) in China has increased in recent years. HIV screening for pregnant women was performed in a remote area in Xinjiang, as an effort to promote universal HIV screening in pregnant women and to help prevention of mother-to-child transmission. Methods: Pregnant women in Burqin and Jeminay Counties in Xinjiang were offered free voluntary HIV screening. Local mid-level medical workers were trained to use Determine® HIV-1/2 kit for HIV screening. All the tested pregnant women signed a consent form, received HIV education material, and participated in an HIV knowledge survey. Results: All the 890 pregnant women receiving HIV test had negative result. Among these women, 67.6% were Kazakh and 40.9% were farmers. Survey of HIV knowledge showed that these women's awareness about mother-to-child transmission was limited. The levels of HIV knowledge were related with ethnic background, age, education and profession of the pregnant women. Conclusion: The results suggested that HIV infection had not become a significant problem among the pregnant women in this remote area of Xinjiang, but continued efforts to improve the awareness of HIV, especially the knowledge about mother-to-child transmission of HIV, in pregnant women were needed

    'The girl with her period is the one to hang her head' Reflections on menstrual management among schoolgirls in rural Kenya

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The onset of menstruation is a landmark event in the life of a young woman. Yet the complications and challenges that can accompany such an event have been understudied, specifically in resource-poor settings. As interventions aim to improve female attendance in schools, it is important to explore how menstruation is perceived and navigated by girls in the school setting. This research conveys rural Kenyan schoolgirls' perceptions and practices related to menstruation</p> <p>Methods</p> <p>Data were collected at six rural schools in the Nyanza Province of Western Kenya. Using focus group discussions, in-depth interviews, and field notes from observations, researchers collected information from 48 primary schoolgirls and nine teachers. Systematic analysis began with a reading of transcripts and debriefing notes, followed by manual coding of the narratives.</p> <p>Results</p> <p>Focus group discussions became opportunities for girls to share thoughts on menstruation, instruct one another on management practices and advise one another on coping mechanisms. Girls expressed fear, shame, distraction and confusion as feelings associated with menstruation. These feelings are largely linked to a sense of embarrassment, concerns about being stigmatized by fellow students and, as teachers explained, a perception that the onset of menstruation signals the advent of a girl's sexual status. Among the many methods for managing their periods, girls most frequently said they folded, bunched up or sewed cloth, including cloth from shirts or dresses, scraps of old cloth, or strips of an old blanket. Cloth was reported to frequently leak and cause chafing, which made school attendance difficult particularly as the day progressed. Attitudes and practices of girls toward menstruation have been arranged into personal, environmental and behavioural factors.</p> <p>Conclusion</p> <p>Further research on menstrual management options that are practical, sustainable and culturally acceptable must be conducted to inform future programs and policies that aim to empower young girls as they transition into womanhood. Stakeholders working within this and similar contexts must consider systematic mechanisms to explain to young girls what menstruation is and how to manage it. Providing sanitary supplies or guiding girls on how to create supplies serve as critical components for future interventions.</p

    Fano Resonances in Flat Band Networks

    Full text link
    Linear wave equations on Hamiltonian lattices with translational invariance are characterized by an eigenvalue band structure in reciprocal space. Flat band lattices have at least one of the bands completely dispersionless. Such bands are coined flat bands. Flat bands occur in fine-tuned networks, and can be protected by (e.g. chiral) symmetries. Recently a number of such systems were realized in structured optical systems, exciton-polariton condensates, and ultracold atomic gases. Flat band networks support compact localized modes. Local defects couple these compact modes to dispersive states and generate Fano resonances in the wave propagation. Disorder (i.e. a finite density of defects) leads to a dense set of Fano defects, and to novel scaling laws in the localization length of disordered dispersive states. Nonlinearities can preserve the compactness of flat band modes, along with renormalizing (tuning) their frequencies. These strictly compact nonlinear excitations induce tunable Fano resonances in the wave propagation of a nonlinear flat band lattice

    Genes That Influence Swarming Motility and Biofilm Formation in Variovorax paradoxus EPS

    Get PDF
    Variovorax paradoxus is an aerobic soil bacterium associated with important biodegradative processes in nature. We use V. paradoxus EPS to study multicellular behaviors on surfaces.We recovered flanking sequence from 123 clones in a Tn5 mutant library, with insertions in 29 different genes, selected based on observed surface behavior phenotypes. We identified three genes, Varpa_4665, Varpa_4680, and Varpa_5900, for further examination. These genes were cloned into pBBR1MCS2 and used to complement the insertion mutants. We also analyzed expression of Varpa_4680 and Varpa_5900 under different growth conditions by qPCR.The 29 genes we identified had diverse predicted functions, many in exopolysaccharide synthesis. Varpa_4680, the most commonly recovered insertion site, encodes a putative N-acetyl-L-fucosamine transferase similar to WbuB. Expression of this gene in trans complemented the mutant fully. Several unique insertions were identified in Varpa_5900, which is one of three predicted pilY1 homologs in the EPS genome. No insertions in the two other putative pilY1 homologs present in the genome were identified. Expression of Varpa_5900 altered the structure of the wild type swarm, as did disruption of the chromosomal gene. The swarming phenotype was complemented by expression of Varpa_5900 from a plasmid, but biofilm formation was not restored. Both Varpa_4680 and Varpa_5900 transcripts were downregulated in biofilms and upregulated during swarming when compared to log phase culture. We identified a putative two component system (Varpa_4664-4665) encoding a response regulator (shkR) and a sensor histidine kinase (shkS), respectively. Biofilm formation increased and swarming was strongly delayed in the Varpa_4665 (shkS) mutant. Complementation of shkS restored the biofilm phenotype but swarming was still delayed. Expression of shkR in trans suppressed biofilm formation in either genetic background, and partially restored swarming in the mutant.The data presented here point to complex regulation of these surface behaviors
    corecore