144 research outputs found

    Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling

    No full text
    Continuous wave ultraviolet (UV) laser irradiation at lambda=244 nm on the +z face of undoped and MgO doped congruent lithium niobate single crystals has been observed to inhibit ferroelectric domain inversion. The inhibition occurs directly beneath the illuminated regions, in a depth greater than 100 nm during subsequent electric field poling of the crystal. Domain inhibition was confirmed by both differential domain etching and piezoresponse force microscopy. This effect allows the formation of arbitrarily shaped domains in lithium niobate and forms the basis of a high spatial resolution micro-structuring approach when followed by chemical etching

    Ultraviolet writing of channel waveguides in proton-exchanged LiNbO<sub>3</sub>

    No full text
    We report on a direct ultraviolet (UV) writing method for the fabrication of channel waveguides at 1.55 ”m in LiNbO3 through UV irradiation of surface and buried planar waveguides made by annealed proton exchange and reverse proton exchange. A systematic study of the guidance properties as a function of the UV writing conditions is presented

    Precision nanoscale domain engineering of lithium niobate via UV laser induced inhibition of poling

    Full text link
    Continuous wave ultraviolet (UV) laser irradiation at lambda=244 nm on the +z face of undoped and MgO doped congruent lithium niobate single crystals has been observed to inhibit ferroelectric domain inversion. The inhibition occurs directly beneath the illuminated regions, in a depth greater than 100 nm during subsequent electric field poling of the crystal. Domain inhibition was confirmed by both differential domain etching and piezoresponse force microscopy. This effect allows the formation of arbitrarily shaped domains in lithium niobate and forms the basis of a high spatial resolution micro-structuring approach when followed by chemical etching

    Nanoscale surface domain formation on the +z face of lithium niobate by pulsed UV laser illumination

    No full text
    Single-crystal congruent lithium niobate samples have been illuminated on the +z crystal face by pulsed ultraviolet laser wavelengths below (248 nm) and around (298-329 nm) the absorption edge. Following exposure, etching with hydrofluoric acid reveals highly regular precise domain-like features of widths ~150-300 nm, exhibiting distinct three-fold symmetry. Examination of illuminated unetched areas by scanning force microscopy shows a corresponding contrast in piezoelectric response. These observations indicate the formation of nanoscale ferroelectric surface domains, whose depth has been measured via focused ion beam milling to be ~2 micron. We envisage this direct optical poling technique as a viable route to precision domain-engineered structures for waveguide and other surface applications

    Susceptibility to tuberculosis is associated with variants in the ASAP1 gene encoding a regulator of dendritic cell migration

    Get PDF
    Human genetic factors predispose to tuberculosis (TB). We studied 7.6 million genetic variants in 5,530 people with pulmonary TB and in 5,607 healthy controls. In the combined analysis of these subjects and the follow-up cohort (15,087 TB patients and controls altogether), we found an association between TB and variants located in introns of the ASAP1 gene on chromosome 8q24 (P = 2.6 × 10−11 for rs4733781; P = 1.0 × 10−10 for rs10956514). Dendritic cells (DCs) showed high ASAP1 expression that was reduced after Mycobacterium tuberculosis infection, and rs10956514 was associated with the level of reduction of ASAP1 expression. The ASAP1 protein is involved in actin and membrane remodeling and has been associated with podosomes. The ASAP1-depleted DCs showed impaired matrix degradation and migration. Therefore, genetically determined excessive reduction of ASAP1 expression in M. tuberculosis–infected DCs may lead to their impaired migration, suggesting a potential mechanism of predisposition to TB

    Interactions among mitochondrial proteins altered in glioblastoma

    Get PDF
    Mitochondrial dysfunction is putatively central to glioblastoma (GBM) pathophysiology but there has been no systematic analysis in GBM of the proteins which are integral to mitochondrial function. Alterations in proteins in mitochondrial enriched fractions from patients with GBM were defined with label-free liquid chromatography mass spectrometry. 256 mitochondrially-associated proteins were identified in mitochondrial enriched fractions and 117 of these mitochondrial proteins were markedly (fold-change &#8805;2) and significantly altered in GBM (p &#8804; 0.05). Proteins associated with oxidative damage (including catalase, superoxide dismutase 2, peroxiredoxin 1 and peroxiredoxin 4) were increased in GBM. Protein–protein interaction analysis highlighted a reduction in multiple proteins coupled to energy metabolism (in particular respiratory chain proteins, including 23 complex-I proteins). Qualitative ultrastructural analysis in GBM with electron microscopy showed a notably higher prevalence of mitochondria with cristolysis in GBM. This study highlights the complex mitochondrial proteomic adjustments which occur in GBM pathophysiology

    Reduced Ordered Binary Decision Diagram with Implied Literals: A New knowledge Compilation Approach

    Full text link
    Knowledge compilation is an approach to tackle the computational intractability of general reasoning problems. According to this approach, knowledge bases are converted off-line into a target compilation language which is tractable for on-line querying. Reduced ordered binary decision diagram (ROBDD) is one of the most influential target languages. We generalize ROBDD by associating some implied literals in each node and the new language is called reduced ordered binary decision diagram with implied literals (ROBDD-L). Then we discuss a kind of subsets of ROBDD-L called ROBDD-i with precisely i implied literals (0 \leq i \leq \infty). In particular, ROBDD-0 is isomorphic to ROBDD; ROBDD-\infty requires that each node should be associated by the implied literals as many as possible. We show that ROBDD-i has uniqueness over some specific variables order, and ROBDD-\infty is the most succinct subset in ROBDD-L and can meet most of the querying requirements involved in the knowledge compilation map. Finally, we propose an ROBDD-i compilation algorithm for any i and a ROBDD-\infty compilation algorithm. Based on them, we implement a ROBDD-L package called BDDjLu and then get some conclusions from preliminary experimental results: ROBDD-\infty is obviously smaller than ROBDD for all benchmarks; ROBDD-\infty is smaller than the d-DNNF the benchmarks whose compilation results are relatively small; it seems that it is better to transform ROBDDs-\infty into FBDDs and ROBDDs rather than straight compile the benchmarks.Comment: 18 pages, 13 figure
    • 

    corecore