352 research outputs found

    Field-flow fractionation of cationic cellulose derivatives

    Get PDF
    The asymmetric flow field-flow fractionation (AF4) method was developed for cationic cellulose derivatives. AF4 is the method of choice especially for high-molar mass samples, which are challenging to characterize with conventional chromatographic techniques such as size-exclusion chromatography (SEC). The cationic charge of macromolecules also complicates the size-based separations where no interaction between the analytes and the column stationary phase (SEC) or membrane (AF4) should occur. However, many column matrices and membranes carry negative charge and thus preventing interactions between cationic analytes and negatively charged separation support should be taken into consideration when doing method development. In this study, two eluent compositions, neutral and acidic, were tested for AF4 separation of cationic hydroxyethyl celluloses with varying charge densities. The eluent composition with a pH below the isoelectric point of regenerated cellulose membrane, which was used in this AF4 study, enabled the size-based separation with close to 100% analysis recovery. Macromolecular parameters (molar mass and radius of gyration) and conformation were investigated by coupling a multi-angle light scattering detector and differential refractometer to the AF4 system.Peer reviewe

    Separation of isomeric cereal-derived arabinoxylan-oligosaccharides by collision induced dissociation - travelling wave ion mobility spectrometry - tandem mass spectrometry (CID-TWIMS-MS/MS)

    Get PDF
    The potential of travelling wave ion mobility spectroscopy in combination with collision induced dissociation tandem mass spectrometry (CID-TWIMS-MS/MS) to separate cereal-derived isomeric arabinoxylanoligosaccharides (A)XOS was investigated. Three trisaccharide, four tetrasaccharide, and four pentasaccharide (A)XOS isomers were analyzed by positive and negative ionization TWIMS-MS and CID-TWIMS-MS/MS. The triand pentasaccharide isomers were distinguishable by the ATDs of the precursor ions. The CID-TWIMS-MS/MS could separate most of the isomeric fragment ions produced from tetra- and pentasaccharide (A)XOS. Finally, the base peak mobility spectrum is introduced as a practical tool for (A)XOS fingerprinting.Peer reviewe

    The role of acetyl xylan esterase in the solubilization of xylan and enzymatic hydrolysis of wheat straw and giant reed

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Due to the complexity of lignocellulosic materials, a complete enzymatic hydrolysis into fermentable sugars requires a variety of cellulolytic and xylanolytic enzymes. Addition of xylanases has been shown to significantly improve the performance of cellulases and to increase cellulose hydrolysis by solubilizing xylans in lignocellulosic materials. The goal of this work was to investigate the effect of acetyl xylan esterase (AXE) originating from <it>Trichoderma reesei </it>on xylan solubilization and enzymatic hydrolysis of cellulose.</p> <p>Results</p> <p>The solubilization of xylan in pretreated wheat straw and giant reed (<it>Arundo donax</it>) by xylanolytic enzymes and the impact of the sequential or simultaneous solubilization of xylan on the hydrolysis of cellulose by purified enzymes were investigated. The results showed that the removal of acetyl groups in xylan by AXE increased the accessibility of xylan to xylanase and improved the hydrolysis of xylan in pretreated wheat straw and giant reed. Solubilization of xylan led to an increased accessibility of cellulose to cellulases and thereby increased the hydrolysis extent of cellulose. A clear synergistic effect between cellulases and xylanolytic enzymes was observed. The highest hydrolysis yield of cellulose was obtained with a simultaneous use of cellulases, xylanase and AXE, indicating the presence of acetylated xylan within the cellulose matrix. Acetylated xylobiose and acetylated xylotriose were produced from xylan without AXE, as confirmed by atmospheric pressure matrix-assisted laser desorption/ionization ion trap mass spectrometry.</p> <p>Conclusions</p> <p>The results in this paper demonstrate that supplementation of xylanase with AXE enhances the solubilization of xylan to some extent and, consequently, increases the subsequent hydrolysis of cellulose. The highest hydrolysis yield was, however, obtained by simultaneous hydrolysis of xylan and cellulose, indicating a layered structure of cellulose and xylan chains in the cell wall substrate. AXE has an important role in the hydrolysis of lignocellulosic materials containing acetylated xylan.</p

    Fungal Cell Biomass From Enzyme Industry as a Sustainable Source of Hydrocolloids

    Get PDF
    Industrial enzyme production yields vast amounts of cell biomass as by-product that is treated as waste, which brings costs and causes an environmental burden. Nonetheless with the current drive toward resource efficiency, conversion of the cell biomass into value-added products would provide an economically viable alternative for the industry. The biomass is composed of fungal cells, containing potentially valuable heteropolysaccharides and glycoproteins, but a technology is lacking to valorize them. For the first time, we characterized the composition of the biomass, extracted biopolymers by aqueous and alkaline treatments, and studied their behavior as novel hydrocolloids in multiphase systems. Alkaline extraction yielded a carbohydrate content of 37.5% and an amino acid content of 27.6%, whereas water extraction yielded 6.6 and 61.3%, respectively. Emulsions prepared with alkaline extracts were relatively stable during a 15-day storage period. We demonstrated that the costly waste management in enzyme production can be replaced by sustainable fractioning, and these fractions can be valorized.Peer reviewe

    Non-alcoholic beverages from fermented cereals with increased oligosaccharide content

    Get PDF
    The aim of this study is to develop a new technology for making traditional Lithuanian non-alcoholic beverage kvass from fermented cereals by extending the spectrum of raw materials (extruded rye) and applying new biotechnological resources (xylanolytic enzymes and lactic acid bacteria (LAB)) to improve its functional properties. Arabinoxylans in extruded rye were very efficiently hydrolysed into oligosaccharides by xylanolytic complex Ceremix Plus MG. Using Ceremix Plus MG and LAB fermentation, the yield of arabinoxylooligosaccharides and xylooligosaccharides in beverage was increased to 300 and 1100 mg/L, respectively. Beverages fermented by LAB had lower pH values and ethanol volume fraction compared to the yeast fermented beverage. The acceptability of the beverage fermented by Lactobacillus sakei was higher than of Pediococcus pentosaceus- or yeast-fermented beverages and similar to the acceptability of commercial kvass made from malt extract. The results showed that extruded rye, xylanolytic enzymes and LAB can be used for production of novel and safe high-value non-alcoholic beverages.Peer reviewe

    Enzymatic analysis of levan produced by lactic acid bacteria in fermented doughs

    Get PDF
    Levans and inulins are fructans with mainly beta-(2 -> 6) and beta-(2 -> 1) linkages, respectively. Levans are produced by many lactic acid bacteria, e.g. during sourdough fermentation. Levans have shown prebiotic properties and may also function as in situ-produced hydrocolloids. So far, levan contents have been measured by acid hydrolysis, which cannot distinguish levans from e.g. inulins. In order to develop a specific analysis for levan in food matrices, a Paenibacillus amylolyticus endolevanase was combined with exoinulinase for levan hydrolysis. A separate endoinulinase treatment was used to detect the possible presence of inulin. Interfering sugars were removed by a pre-wash with aqueous ethanol. Levan content was estimated from fructose and glucose released in the hydrolysis, with a correction made for the residual fructose and glucose-containing sugars. The method was validated using wheat model doughs spiked with commercial Erwinia levan, and tested by analyzing levan content in Leuconostoc mesenteroides DSM 20343-fermented fava bean doughs.Peer reviewe

    Thermostable recombinant xylanases from Nonomuraea flexuosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylans and pretreated wheat straw

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the hydrolysis of lignocellulosic materials, thermostable enzymes decrease the amount of enzyme needed due to higher specific activity and elongate the hydrolysis time due to improved stability. For cost-efficient use of enzymes in large-scale industrial applications, high-level expression of enzymes in recombinant hosts is usually a prerequisite. The main aim of the present study was to compare the biochemical and hydrolytic properties of two thermostable recombinant glycosyl hydrolase families 10 and 11 (GH10 and GH11, respectively) xylanases with respect to their potential application in the hydrolysis of lignocellulosic substrates.</p> <p>Results</p> <p>The xylanases from <it>Nonomuraea flexuosa </it>(Nf Xyn11A) and from <it>Thermoascus aurantiacus </it>(Ta Xyn10A) were purified by heat treatment and gel permeation chromatography. Ta Xyn10A exhibited higher hydrolytic efficiency than Nf Xyn11A toward birchwood glucuronoxylan, insoluble oat spelt arabinoxylan and hydrothermally pretreated wheat straw, and it produced more reducing sugars. Oligosaccharides from xylobiose to xylopentaose as well as higher degree of polymerization (DP) xylooligosaccharides (XOSs), but not xylose, were released during the initial hydrolysis of xylans by Nf Xyn11A, indicating its potential for the production of XOS. The mode of action of Nf Xyn11A and Ta Xyn10A on glucuronoxylan and arabinoxylan showed typical production patterns of endoxylanases belonging to GH11 and GH10, respectively.</p> <p>Conclusions</p> <p>Because of its high catalytic activity and good thermostability, <it>T. aurantiacus </it>xylanase shows great potential for applications aimed at total hydrolysis of lignocellulosic materials for platform sugars, whereas <it>N. flexuosa </it>xylanase shows more significant potential for the production of XOSs.</p

    Active food packaging through controlled in situ production and release of hexanal

    Get PDF
    Transportation and storage of vegetables and fruits, including berries, is increasing to meet growing consumer demand for fresh foods. Ripening and softening of plant tissues may be slowed down by hexanal, a safe volatile compound that also has antimicrobial properties. Thus hexanal could be applied during the food distribution chain to slow down the spoilage of plant-based products and reduce food waste. Nonetheless, due to the rapid evaporation of hexanal, a constant supply is needed. Our aim was to develop a concept to incorporate food-grade sunflower oil in a polysaccharide aerogel matrix for controlled in situ production and release of hexanal. We compared enzyme- and light-catalyzed lipid oxidation reactions, determined the release of hexanal at different conditions, and performed storage stability tests of blueberries and cherry tomatoes. The lipid-loaded aerogels assessed here are a potential novel delivery matrix for controlled hexanal formation to extend the shelf life of plant-based products.Peer reviewe

    Identification and structural analysis of cereal arabinoxylan-derived oligosaccharides by negative ionization HILIC-MS/MS

    Get PDF
    Recent works provide evidence of the prebiotic potential of arabinoxylan-derived oligosaccharides (A)XOS. In this study, we developed a structural analysis for cereal-derived (A)XOS by negative ionization HILIC-MS/MS. Initially, we assessed twelve (A)XOS samples of known structures with different linkage positions and branching points by direct-infusion negative ESI-MSn. We subsequently developed the negative ion HILIC-MS/MS with a post-column addition of ammonium chloride. The selected (A)XOS represented both linear (arabinofuranosyl residue linked to the non-reducing end of xylooligosaccharide) and branched structures. Each (A)XOS sample produced a specific spectrum in negative ion ESI-MSn. By analyzing cross-ring fragment ions, we determined the linkage positions of linear (A)XOS. The presence or absence of diagnostic ions in the MS3 allowed us to detect different branches (O-2- or/and O-3-linked arabinofuranosyl with/or without O-4-linked xylopyranosyl at the non-reducing end). Furthermore, we could identify all analyzed samples by HILIC-MS/MS, based on the formed spectral library and chromatographic retention times.Peer reviewe

    Impact of in situ produced exopolysaccharides on rheology and texture of fava bean protein concentrate

    Get PDF
    The aim of this study was to investigate the impact of in situ produced exopolysaccharides (EPS) on the rheological and textural properties of fava bean protein concentrate (FPC). EPS (dextrans) were produced from sucrose by two lactic acid bacteria (LAB). The acidification, rheology, and texture of FPC pastes fermented with Leuconostoc pseudomesenteroides DSM 20193 and Weissella confusa VTT E-143403 (E3403) were compared. A clear improvement in rheological and textural parameters was observed in sucrose-added pastes after fermentation, especially with W. confusa VTT E3403. Only moderate proteolysis of fava bean protein during fermentation was observed. The microstructure of the protein in FPC pastes, as observed by confocal laser scanning microscopy, revealed a less continuous and denser structure in EPS-abundant pastes. The beneficial structure formed during EPS-producing fermentation could not be mimicked by simply mixing FPC, isolated dextran, lactic acid, and acetic acid with water. These results emphasize the benefits of in situ produced EPS in connection with the LAB fermentation of legume protein-rich foods. Fermentation with EPS-producing LAB is a cost-effective and clean-labeled technology to obtain tailored textures, and it can further enhance the usability of legumes in novel foods.Peer reviewe
    corecore